
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

No More DeLuLu: Physics-Inspired Kernel Networks for
Geometrically-Grounded Neural Computation

Anonymous Authors1

Abstract

We introduce the ⵟ-product, a kernel op-
erator combining quadratic alignment with
inverse-square proximity. We prove it
is a Mercer kernel—analytic, Lipschitz on
bounded domains, and self-regularizing—
admitting a unique RKHS embedding. Neu-
ral Matter Networks (NMNs) use ⵟ-products
as the sole nonlinearity, replacing conven-
tional linear-activation-normalization blocks
with a single geometrically-grounded opera-
tion. This architectural simplification pre-
serves universal approximation while elimi-
nating explicit activations and layer normal-
ization. Empirically, NMN-based classifiers
match linear baselines on MNIST while ex-
hibiting bounded prototype evolution and su-
perposition robustness. In language model-
ing, Aether-GPT2 achieves lower validation
loss than GPT-2 (2.29 vs 2.43) with fewer
components per layer. Our framework uni-
fies kernel learning, gradient stability, and in-
formation geometry, establishing NMNs as a
principled alternative to conventional neural
architectures.

1. Introduction
Modern neural networks separate geometry from non-
linearity: dot products compute alignment, then acti-
vation functions like ReLU threshold the result (Good-
fellow et al., 2016). This discards information—all
negative activations become zero—requiring normal-
ization layers and attention mechanisms to recover ex-
pressiveness (Ioffe & Szegedy, 2015; Vaswani et al.,
2017).

1Anonymous Institution, Anonymous City, Anonymous
Region, Anonymous Country. Correspondence to: Anony-
mous Author <anon.email@domain.com>.

Preliminary work. Under review by the International Con-
ference on Machine Learning (ICML). Do not distribute.

We propose the ⵟ-product, a neural operator that uni-
fies alignment and proximity in a single computation:

ⵟ(w, x) := 〈w, x〉2
‖w − x‖2 + ε

(1)

Inspired by inverse-square laws in physics, this opera-
tor creates a “potential well” around the weight vector
w: responses are high when inputs are both aligned
and close, providing intrinsic non-linearity without
thresholding. The ⵟ-product is a Mercer kernel (The-
orem 1) with universal approximation (Theorem 4),
self-regulation (Proposition 1), and stable gradients
(Proposition 2).

Using this kernel in primal form, we construct Neural-
Matter Networks (NMNs)—networks where neurons
interact through potential fields without requiring
Gram matrix inversion. Our contributions: Our con-
tributions span theory, architecture, and interpretabil-
ity: the ⵟ-product eliminates activation functions
while maintaining Mercer kernel properties; NMNs re-
duce memory by 15-25% with infinite differentiability
for physics-informed applications; and the geometric
structure preserves spatial relationships (Theorems 2,
3), enabling principled analysis of learned representa-
tions.

2. Methodology: A Framework for
Geometry-Aware Computation

The ⵟ-product is formally defined as ⵟ(w, x) =
(w⊤x)2

∥w−x∥2+ε . It exhibits a unique form of non-linearity.
Unlike conventional activation functions (e.g., ReLU
(Nair & Hinton, 2010), sigmoid) which are often ap-
plied as separate, somewhat heuristic, transformations
to introduce non-linearity after a linear operation, the
non-linearity in the ⵟ-product arises directly from its
mathematical structure. It is a function of the squared
dot product (capturing alignment) and the inverse
squared Euclidean distance (capturing proximity) be-
tween the weight vector w and the input vector x. This
formulation provides a rich, explainable non-linearity
based on fundamental geometric and algebraic rela-

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

No More DeLuLu: Physics-Inspired Kernel Networks for Geometrically-Grounded Neural Computation

tionships, rather than an imposed, ”artificial” non-
linear mapping. The interaction between the numera-
tor and the denominator allows for complex responses
that are inherently tied to the geometric interplay of
the input vectors.

The ⵟ-product creates a potential well around the
weight vector w, reflecting both alignment and prox-
imity.

At initialization, this geometry also exhibits a fa-
vorable high-dimensional scaling behavior. Under
standard assumptions of i.i.d. zero-mean, constant-
variance coordinates for x,w ∈ Rd, both the numera-
tor A(x,w) = (w⊤x)2 and the denominator r(x,w) =
‖w − x‖2 grow linearly with dimension, while their
ratio K(x,w) = A/(r + ε) remains O(1) in expecta-
tion (Corollary 2). This self-normalizing O(1) scaling
directly counters high-dimensional “saturation” con-
cerns that arise for RBF kernels, whose values vanish
exponentially with dimension.

As a Mercer kernel (Theorem 1), on every compact
domain K the ⵟ-product admits a unique RKHS (up
to isometry) (Theorem 6) and inherits kernel method
advantages. Importantly, this kernel is used in its pri-
mal form for weight prototype learning and optimiza-
tion. Consequently, we do not use any Gram matrix,
thereby bypassing the stability issues associated with
its inversion in dual-form kernel regression (Schölkopf
& Smola, 2002).

When the ⵟ-product is applied to probability distri-
butions in the simplex, its extremal values admit an
information-geometric characterization:
Theorem 1 (Mercer property of the YAT product
kernel). Let ε > 0 and define

kⵟ(x,w) =
(x⊤w)2

‖x− w‖2 + ε
, x, w ∈ Rd.

Then for every compact set K ⊂ Rd, the kernel kⵟ
is symmetric, continuous, and positive definite on K.
Consequently, kⵟ is a Mercer kernel on K.
Theorem 2 (Minimal Similarity and Statistical Or-
thogonality). Let p, q ∈ ∆n−1 be distinct distribu-
tions. Then ⵟ(p, q) = 0 if and only if their sup-
ports are disjoint, supp(p) ∩ supp(q) = ∅. In this
case DKL(p‖q) = ∞ and the cross-entropy H(p, q) is
infinite.
Theorem 3 (Maximal (Singular) Similarity). Define
the ε-dependent ⵟ-product

ⵟε(p, q) :=
(p⊤q)2

‖p − q‖22 + ε
.

Let ε > 0 and p, q ∈ ∆n−1. Then ⵟε(p, q) is finite for
all p, q, and

ⵟε(p, p) =
‖p‖42
ε

.

In the singular limit ε → 0+, the self-similarity
ⵟε(p, p) diverges.
Singular joint limit. If (qk)k≥1 ⊂ ∆n−1 satisfies
qk 6= p and ‖qk − p‖2 → 0, and if εk → 0+, then

ⵟεk(p, qk) → ∞.

Corollary 1 (Distributional Identity and KL). For
distributions p, q ∈ ∆n−1, DKL(p‖q) = 0 if and
only if p = q (Gibbs’ inequality (Cover & Thomas,
2006)). In this case the cross-entropy reduces to en-
tropy: H(p, q) = H(p).

The ⵟ-product creates a potential well around w,
where interaction strength diminishes with distance
while preserving orientation sensitivity. The explicit
gradient structure (Theorem 5) and stable gradient de-
cay (Proposition 2) ensure that gradients vanish for
distant inputs, providing natural localization. Input
perturbation robustness (Proposition 4) guarantees
bounded response changes on bounded domains (with
constant controlled by ε). When applied to probabil-
ity distributions, it connects geometry to information-
theoretic extremes (Theorem 2, Theorem 3, Corol-
lary 1).

2.1. Neural Matter Network (NMN) Layers

The ⵟ-product serves as the foundation for Neu-
ral Matter Network layers, employing the non-linear,
spatially-aware Kⵟ-kernel as the primary interaction
mechanism, replacing conventional linear projections
(〈w, x〉). An NMN layer transforms input x ∈ Rd

through multiple units, each defined by weight vector
wi ∈ Rd and bias bi ∈ R:

h(x) =
(
s ·

n∑
i=1

Kⵟ(wi, x, bi)
)

=

(
s ·

n∑
i=1

(w⊤
i x + bi)

2

‖wi − x‖2 + ε

)

where s is a scaling factor and n denotes the number
of units. Each unit responds based on both alignment
and proximity to its learned weight vector, enabling
universal function approximation (Theorem 4) as an
intrinsic property of the Kⵟ-kernel itself. The self-
regulation property (Proposition 1) ensures that out-
puts remain bounded without requiring explicit nor-
malization layers. Figure 1 illustrates the architectural
simplification.
Theorem 4 (Universal approximation with ⵟ-kernel).
Let X ⊂ Rd be a compact set. Define the class of

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

No More DeLuLu: Physics-Inspired Kernel Networks for Geometrically-Grounded Neural Computation

Standard
x

y

Attention

+

LayerNorm

Linear d→4d

GeLU

Linear 4d→d

+

LayerNorm

Aether
x

y

Attention

+

NMN d→4d

Linear 4d→d

+

Figure 1. Comparison of Standard Transformer block (left)
and Aether block (right). The NMN layer replaces Lin-
ear+GeLU, eliminating activation functions and all Layer-
Norm operations.

functions F realizable by the network as the linear span
of the activation units:

F = span
{

(x · w + b)2

‖x − w‖2 + ε

∣∣∣∣∣ w ∈ Rd, b ∈ R

}

where ε > 0 is a fixed constant and b is the inner bias
parameter. The set F is dense in C(X) under the
uniform norm.
Proposition 1 (Natural Self-Regulation). For any
fixed w and unit direction u, the ⵟ-product output
remains bounded as k → ∞: limk→∞ ⵟ(w, ku) =
‖w‖2 cos2 θ, where θ is the angle between w and u.
Proposition 2 (Gradient Decay for Outliers). The
gradient of the ⵟ-product vanishes for distant inputs:
lim∥x∥→∞ ‖∇xⵟ(w, x)‖ = 0.
Theorem 5 (Gradient Direction). For two
vectors ei, ej, the gradient is: ∇eiⵟ =

2⟨ei,ej⟩
ε+∥ei−ej∥2

(
ej − ⟨ei,ej⟩(ei−ej)

ε+∥ei−ej∥2

)
.

Theorem 6 (RKHS Existence). For every compact
set K ⊂ Rd, the kernel kⵟ is positive definite on K
(Theorem 1). Hence, by the Moore–Aronszajn theo-
rem, there exists a unique RKHS HK and feature map
ϕK : K → HK such that kⵟ(x, y) = 〈ϕK(x), ϕK(y)〉HK

for all x, y ∈ K.
Proposition 3 (Lipschitz Continuity). Fix ε > 0 and
a weight vector w with ‖w‖2 ≤ 1. Then the map x 7→
ⵟ(w, x) is Lipschitz continuous on the unit ball {x ∈
Rd : ‖x‖2 ≤ 1} with Lipschitz constant L = 2/ε+4/ε2.

Lemma 1 (Analyticity). For ε > 0, the map x 7→
ⵟ(w, x) is real-analytic on Rd (infinitely differentiable).
Proposition 4 (Input Perturbation Robustness). Fix
ε > 0 and ‖w‖2 ≤ 1. For any x, x′ in the unit ball with
‖x′ − x‖2 ≤ δ,

|ⵟ(w, x′)− ⵟ(w, x)| ≤
(
2

ε
+

4

ε2

)
δ.

Corollary 2 (Dimensional Self-Normalization). Let
x,w ∈ Rd have i.i.d. zero-mean coordinates with
Var(xi) = Var(wi) = σ2 (constant in d), and assume
in addition that:

• x and w are independent, and

• the coordinates are sub-Gaussian with parameter
independent of d (e.g., Gaussian initialization),
hence have finite fourth moments.

Fix ε > 0. Then as d → ∞,

E[ⵟ(w, x)] = O(1).

Proposition 5 (Extremal Similarity on the Simplex).
For p, q ∈ ∆n−1: ⵟ(p, q) = 0 iff supp(p)∩supp(q) = ∅,
which implies KL(p‖q) = ∞.
Remark 1 (Optimal ε Scaling). For noisy inputs with
n ∼ N (0, σ2I), the stability constant should scale as
ε∗ ∝ dσ2 to maximize gradient signal-to-noise ratio.

2.2. Architectural Implementation

Following the representer theorem (Schölkopf et al.,
2001), optimal solutions in kernel methods lie in the
span of kernel evaluations at training points. Since
the ⵟ-product is a Mercer kernel, composing mul-
tiple ⵟ-layers without intervening linear projections
would create a deep kernel that loses this represen-
tational guarantee. Our architecture therefore pairs
each ⵟ-kernel layer with a subsequent linear pro-
jection, preserving the kernel’s theoretical properties
while enabling depth. We also eliminate normalization
layers entirely: the ⵟ-product’s self-regulation prop-
erty (Proposition 1) provides intrinsic normalization,
making explicit batch or layer normalization redun-
dant and potentially harmful to gradient flow. The
Lipschitz regularity (Proposition 3) and analyticity
(Lemma 1) ensure stable training dynamics and in-
finite differentiability. All NMN-based layers use the
adaptive scaling factor s =

(
n

log(1+n)

)α
, where n is

the number of units and α is a learnable parameter
initialized at 1.

Computational Efficiency: The ⵟ-product layer
maintains Θ(Bnd) computational complexity identi-
cal to standard linear layers while providing 15-25%

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

No More DeLuLu: Physics-Inspired Kernel Networks for Geometrically-Grounded Neural Computation

memory reduction through elimination of activation
storage. Our optimized implementation uses the alge-
braic identity ‖w−x‖2 = ‖w‖2+‖x‖2−2w⊤x to reuse
inner product computations, achieving approximately
2× the FLOPs of Linear+ReLU. The approach offers
natural numerical stability and becomes increasingly
efficient at larger layer sizes, making it particularly
suitable for large-scale applications.

3. Results and Discussion
We evaluate the ⵟ-product on three tasks: XOR sepa-
rability (demonstrating non-linearity), MNIST classi-
fication (prototype learning), and language modeling
(Aether-GPT2).

3.1. XOR Separability with a Single Unit

The ⵟ-product’s inherent non-linearity enables solving
non-linearly separable problems with a single unit. For
XOR with inputs (0, 0) → 0, (0, 1) → 1, (1, 0) → 1,
(1, 1) → 0, a single ⵟ-product unit with w = [1,−1]⊤

achieves perfect separation:

x w⊤x Kⵟ(w, x) Class
(0, 0) 0 0 0
(0, 1) −1 1/(5 + ε) > 0 1
(1, 0) 1 1/(1 + ε) > 0 1
(1, 1) 0 0 0

By definition (Eq. (1)), w⊤x = 0 implies Kⵟ(w, x) = 0
(in particular when w ⊥ x). See Appendix D for formal
proof.

3.2. Decision Boundaries and Localization

Unlike linear neurons that induce unbounded hyper-
plane partitions, ⵟ-product neurons generate local-
ized decision surfaces around prototypes. This fol-
lows from self-regulation (Proposition 1): the response
Kⵟ(w, x) → ‖w‖2 cos2 θ as ‖x‖ → ∞.

Figure 2. Decision boundaries in 2D: linear (left) creates
unbounded half-spaces; ⵟ-product (right) forms localized
regions around prototypes (stars).

The extremal similarity results characterize bound-
ary cases. Orthogonality (w⊤x = 0) yields Kⵟ =
0 directly from Eq. (1). Identity (w = x) yields
Kⵟ(w,w) = ‖w‖42/ε (Theorem 3 states this on the sim-
plex; the same algebra holds in Rd). Lipschitz conti-
nuity (Proposition 3) ensures smooth interpolation.

3.3. MNIST Classification

We compare a 10-neuron ⵟ-product classifier against
a linear baseline on MNIST (60k training, 10k test
samples). Architecture: C = 10 prototypes wi ∈ R784.
Training: Adam (lr=0.001), 5 epochs. Baseline: linear
classifier zi = w⊤

i x with softmax.

Table 1. MNIST results (10-neuron classifier).

Acc. ∆‖w‖ α

Linear 92.08% +13.8% –
ⵟ 92.38% −4.5% 1 → 2.68

Bounded Prototype Evolution. The self-
regulation property (Proposition 1) predicts stable
prototype magnitudes. Empirically, linear proto-
types grow unboundedly (+13.8%), while ⵟ-product
prototypes contract slightly (−4.5%), confirming
bounded response fields. The learnable scaling factor
α (initialized at 1) increases to 2.68, amplifying
bounded ⵟ-responses for softmax discrimination.

Superposition Robustness. The squared numera-
tor (w⊤x)2 creates approximate invariance under sign
flip. Prototype inversion (w → −w) yields:

Original Inverted
Linear 92.04% 0.01%
ⵟ 92.18% 87.87%

For linear neurons, (−w)⊤x = −w⊤x flips the logit
sign, causing catastrophic failure. For ⵟ-product, the
numerator invariance provides robustness.

Territorial Structure. Since the numerator is
(w⊤

i wj)
2, orthogonal prototypes satisfy ⵟ(wi,wj) =

0. The ⵟ-product develops heterogeneous structure:
high similarity for morphologically similar digits (7-9),
sharp boundaries elsewhere (Figure 4).

3.4. Language Modeling: Aether-GPT2

We train Aether-GPT2 (124M parameters) on 2.5B
tokens from FineWeb. The architectural modifications
follow Section 2.1: the MLP block is replaced by an

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

No More DeLuLu: Physics-Inspired Kernel Networks for Geometrically-Grounded Neural Computation

Digit 0
S=0.32, H=5.72

Digit 1
S=0.03, H=5.98

Digit 2
S=0.02, H=6.03

Digit 3
S=0.02, H=6.11

Digit 4
S=0.07, H=6.04

Digit 5
S=0.02, H=6.09

Digit 6
S=0.32, H=5.86

Digit 7
S=0.03, H=5.95

Digit 8
S=0.23, H=6.02

Digit 9
S=0.20, H=6.01

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

W
ei

gh
t V

al
ue

Digit 0
S=0.04, H=5.88

Digit 1
S=0.01, H=5.72

Digit 2
S=0.01, H=6.23

Digit 3
S=0.01, H=6.33

Digit 4
S=0.02, H=5.79

Digit 5
S=0.01, H=6.33

Digit 6
S=0.01, H=5.88

Digit 7
S=0.01, H=6.08

Digit 8
S=0.01, H=6.10

Digit 9
S=0.01, H=5.94

2

1

0

1

2

W
ei

gh
t V

al
ue

Figure 3. Learned prototypes: Linear (left) exhibits diffuse representations; ⵟ-product (right) shows sharp, geometrically
coherent features.

0 1 2 3 4 5 6 7 8 9
Prototype Class

0

1

2

3

4

5

6

7

8

9

Pr
ot

ot
yp

e
C

la
ss

0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.1

0.0 0.0 0.0 0.1 0.0 0.1 0.0 0.0 0.0

0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.1

0.0 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.0

0.0 0.0 0.1 0.0 0.0 0.1 0.1 0.1 0.2

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0

0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.2 0.0

Linear - YAT Similarity (diagonal masked)

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

log(1 +
 YAT) Sim

ilarity

0 1 2 3 4 5 6 7 8 9
Prototype Class

0

1

2

3

4

5

6

7

8

9

Pr
ot

ot
yp

e
C

la
ss

0.7 0.3 0.0 0.0 0.2 0.2 0.0 0.1 0.0

0.7 0.2 0.2 0.0 0.1 0.2 0.0 0.4 0.3

0.3 0.2 0.7 0.1 0.0 0.4 0.2 0.3 0.1

0.0 0.2 0.7 0.1 0.3 0.2 0.4 0.1 0.1

0.0 0.0 0.1 0.1 0.1 0.5 0.4 0.3 0.8

0.2 0.1 0.0 0.3 0.1 0.0 0.1 0.8 0.0

0.2 0.2 0.4 0.2 0.5 0.0 0.2 0.3 0.1

0.0 0.0 0.2 0.4 0.4 0.1 0.2 0.0 2.0

0.1 0.4 0.3 0.1 0.3 0.8 0.3 0.0 0.8

0.0 0.3 0.1 0.1 0.8 0.0 0.1 2.0 0.8

Aether - YAT Similarity (diagonal masked)

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

log(1 +
 YAT) Sim

ilarity

Figure 4. Pairwise ⵟ-similarity. Linear (left): uniform; ⵟ-
product (right): heterogeneous territorial structure.

NMN layer (dim 3072, i.e., 4× hidden dim) followed
by a linear projection, eliminating activation functions.
All layer normalization is removed from attention skip
connections to preserve geometric structure.

Table 2. GPT-2 vs Aether-GPT2 (2.5B tokens, identical
hyperparameters).

GPT-2 Aether
Activation GeLU ⵟ
LayerNorm Yes No
Val Loss (FP32) 2.43 2.29
Val Loss (BF16) 3.03 2.69
Improvement – 11.2%
Throughput 138k 132k
Memory – −15–25%

Architectural Simplification. The self-regulation
property (Proposition 1) and dimensional scaling
(Corollary 2) eliminate the need for layer normaliza-
tion. This yields 15–25% memory reduction by remov-
ing activation storage.

Mixed-Precision Stability. Under BF16 train-
ing, Aether-GPT2 achieves 2.69 validation loss ver-
sus 3.03 baseline—an 11.2% relative improvement.
The bounded ⵟ-product response provides numerical
stability without explicit normalization. The RKHS
embedding (Theorem 6) ensures well-defined feature
spaces.

See Appendix E.6 for detailed configuration and BF16
results.

4. Related Work
4.1. Kernel Methods and Neural Tangent

Kernels

Kernel methods enable non-linear learning through
implicit feature mappings (Schölkopf & Smola, 2002).
SVMs (Cortes, 1995) and kernel PCA (Schölkopf et al.,
1998) established the foundation, with Gaussian Pro-
cesses (Williams & Rasmussen, 2006) extending to
probabilistic inference. Scalability came through the
Nyström method (Williams & Seeger, 2000) and Ran-
dom Fourier Features (Rahimi & Recht, 2007).

The Neural Tangent Kernel (Jacot et al., 2018) bridges
kernels and deep learning by characterizing infinite-
width networks as linear models under gradient de-
scent (Lee et al., 2019; Arora et al., 2019). Since
the ⵟ-product is a valid Mercer kernel (Theorem 1),
NTK theory extends to our framework (Proposition 6),
enabling infinite-width analysis of geometric opera-
tors. The connection between SGD and kernel learning
(Daniely, 2017; Li & Liang, 2018) further supports our
approach.

Distance-based kernels (RBF) emphasize proximity;

5

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

No More DeLuLu: Physics-Inspired Kernel Networks for Geometrically-Grounded Neural Computation

0 10000 20000 30000 40000 50000 60000 70000
Training Steps

1.5

2.0

2.5

3.0

3.5

4.0
Tr

ai
ni

ng
 L

os
s

Training Loss

linear-f32
aether-f32

10000 20000 30000 40000 50000 60000 70000
Training Steps

2.1

2.2

2.3

2.4

2.5

2.6

2.7

Va
lid

at
io

n
Lo

ss

Validation Loss

linear-f32
aether-f32

Figure 5. Training and validation loss curves. Aether-GPT2 consistently achieves lower loss throughout training.

polynomial kernels capture feature interactions. The
ⵟ-product unifies both: the squared numerator pro-
vides polynomial-like alignment, while the inverse-
square denominator gives RBF-like locality with in-
trinsic self-regularization.

Deep kernel learning (Wilson et al., 2016; Aitchison
et al., 2021) combines neural networks with kernel
flexibility, but operates in dual form requiring O(n2)
Gram matrices. Our primal-form approach computes
directly in feature space, avoiding this cost. Prior
kernelized networks (Cho & Saul, 2009; Mairal et al.,
2014) approximate kernels within linear-then-activate
structures; the ⵟ-product is simultaneously the com-
putational primitive and the kernel.

4.2. Alternative Neural Operators

Quadratic neurons (Fan et al., 2020; Liao et al., 2024)
achieve non-linearity through polynomial forms but
ignore geometric structure. Multiplicative interac-
tions (Jayakumar et al., 2020) and gated linear units
(Dauphin et al., 2016) introduce element-wise prod-
ucts yet retain activation dependence. SIREN (Sitz-
mann et al., 2020) and Fourier feature networks (Tan-
cik et al., 2020) employ periodic activations for implicit
representations.

The ⵟ-product differs fundamentally: it integrates
alignment (squared dot product) and proximity (in-
verse distance) into a single operator, achieving non-
linearity through geometric structure rather than func-
tional composition—no activation functions required.

4.3. Geometric Foundations

The inverse-square law governs fundamental interac-
tions across physics: gravitation (Newton, 1687), elec-
trostatics (de Coulomb, 1785), and radiation (Gauss,
1835). This principle—intensity scaling inversely with
squared distance—appears in engineering (signal prop-

agation (Rappaport, 2002)) and information theory
(Tanimoto similarity (Tanimoto, 1958)). Geometric
deep learning (Bronstein et al., 2021) provides a uni-
fying framework for exploiting such structure in neural
architectures.

The ⵟ-product operationalizes this geometric princi-
ple for neural computation: interaction strength grows
with alignment but decays with distance, providing
a physics-inspired foundation for learning representa-
tions.

5. Conclusion
We introduced the ⵟ-product, a kernel operator
that unifies alignment and proximity: Kⵟ(w, x) =
(w⊤x)2/(‖w − x‖2 + ε). We proved it is a valid
Mercer kernel with analyticity, Lipschitz continuity
on bounded domains, self-regulation, and gradient
decay—properties that enable Neural Matter Net-
works to preserve universal approximation while elimi-
nating explicit activations and normalization. Empiri-
cally, Aether-GPT2 achieves lower validation loss than
GPT-2 (2.29 vs 2.43) with fewer components per layer.
By grounding neural computation in physics-inspired
geometry, this work offers a principled path toward
simpler, more interpretable architectures.

License
This work is licensed under the Affero GNU General
Public License (AGPL) v3.0. The AGPL is a free
software license that ensures end users have the free-
dom to run, study, share, and modify the software.
It requires that any modified versions of the software
also be distributed under the same license, ensuring
that the freedoms granted by the original license are
preserved in derivative works. The full text of the
AGPL v3.0 can be found at https://www.gnu.org/

6

https://www.gnu.org/licenses/agpl-3.0.en.html
https://www.gnu.org/licenses/agpl-3.0.en.html

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

No More DeLuLu: Physics-Inspired Kernel Networks for Geometrically-Grounded Neural Computation

licenses/agpl-3.0.en.html. By using this work,
you agree to comply with the terms of the AGPL v3.0.

References
Aitchison, L., Yang, A., and Ober, S. W. Deep kernel

processes. In International Conference on Machine
Learning, pp. 130–140. PMLR, 2021.

Aronszajn, N. Theory of reproducing kernels. Trans-
actions of the American Mathematical Society, 68
(3):337–404, 1950.

Arora, S., Du, S. S., Hu, W., Li, Z., Salakhutdinov,
R., and Wang, R. On exact computation with an
infinitely wide neural net. In Advances in Neural
Information Processing Systems, volume 32, 2019.

Bronstein, M. M., Bruna, J., Cohen, T., and
Veličković, P. Geometric deep learning: Grids,
groups, graphs, geodesics, and gauges, 2021. URL
https://arxiv.org/abs/2104.13478.

Cho, Y. and Saul, L. Kernel methods for deep
learning. In Bengio, Y., Schuurmans, D.,
Lafferty, J., Williams, C., and Culotta, A.
(eds.), Advances in Neural Information Process-
ing Systems, volume 22. Curran Associates,
Inc., 2009. URL https://proceedings.
neurips.cc/paper_files/paper/2009/file/
5751ec3e9a4feab575962e78e006250d-Paper.pdf.

Cortes, C. Support-vector networks. Machine Learn-
ing, 1995.

Cover, T. M. and Thomas, J. A. Elements of Infor-
mation Theory. Wiley-Interscience, 2006.

Daniely, A. Sgd learns the conjugate kernel class of
the network. In Advances in Neural Information
Processing Systems, volume 30, 2017.

Dauphin, Y. N., Fan, A., Auli, M., and Grangier, D.
Language modeling with gated convolutional net-
works. CoRR, abs/1612.08083, 2016. URL http:
//arxiv.org/abs/1612.08083.

de Coulomb, C.-A. Premier mémoire sur l’électricité
et le magnétisme. Histoire de l’Académie Royale des
Sciences, pp. 1–31, 1785. in French.

Fan, F., Xiong, J., and Wang, G. Universal ap-
proximation with quadratic deep networks. Neu-
ral Networks, 124:383–392, 2020. ISSN 0893-6080.
doi: https://doi.org/10.1016/j.neunet.2020.01.007.
URL https://www.sciencedirect.com/science/
article/pii/S0893608020300095.

Folland, G. B. Real Analysis: Modern Techniques and
Their Applications. Wiley, 2nd edition, 1999.

Gauss, C. F. Allgemeine Lehrsätze in Beziehung
auf die im verkehrten Verhältniss des Quadrats
der Entfernung wirkenden Anziehungs- und Ab-
stossungskräfte. Dietrich, Göttingen, 1835.

Goodfellow, I., Bengio, Y., and Courville, A. Deep
learning, volume 1. MIT Press, 2016.

Ioffe, S. and Szegedy, C. Batch normalization: Ac-
celerating deep network training by reducing inter-
nal covariate shift, 2015. URL https://arxiv.org/
abs/1502.03167.

Jacot, A., Gabriel, F., and Hongler, C. Neural tan-
gent kernel: Convergence and generalization in neu-
ral networks. Advances in neural information pro-
cessing systems, 31, 2018.

Jayakumar, S. M., Czarnecki, W. M., Menick, J.,
Schwarz, J., Rae, J., Osindero, S., Teh, Y. W.,
Harley, T., and Pascanu, R. Multiplicative inter-
actions and where to find them. 2020.

Lee, J., Xiao, L., Schoenholz, S. S., Bahri, Y., Novak,
R., Sohl-Dickstein, J., and Pennington, J. Wide
neural networks of any depth evolve as linear mod-
els under gradient descent. In Advances in Neural
Information Processing Systems, volume 32, 2019.

Li, Y. and Liang, Y. Learning overparameterized
neural networks via stochastic gradient descent on
structured data. In Advances in Neural Information
Processing Systems, volume 31, 2018.

Liao, J.-X., Hou, B.-J., Dong, H.-C., Zhang, H.,
Zhang, X., Sun, J., Zhang, S., and Fan, F.-
L. Quadratic neuron-empowered heterogeneous
autoencoder for unsupervised anomaly detection.
IEEE Transactions on Artificial Intelligence, 5(9):
4723–4737, 2024. doi: 10.1109/TAI.2024.3394795.

Mairal, J., Koniusz, P., Harchaoui, Z., and Schmid, C.
Convolutional kernel networks, 2014. URL https:
//arxiv.org/abs/1406.3332.

Mercer, J. Functions of positive and negative type, and
their connection with the theory of integral equa-
tions. Philosophical Transactions of the Royal Soci-
ety of London. Series A, 209:415–446, 1909.

Micchelli, C. A., Xu, Y., and Zhang, H. Universal
kernels. Journal of Machine Learning Research, 7
(12), 2006.

7

https://www.gnu.org/licenses/agpl-3.0.en.html
https://www.gnu.org/licenses/agpl-3.0.en.html
https://www.gnu.org/licenses/agpl-3.0.en.html
https://arxiv.org/abs/2104.13478
https://proceedings.neurips.cc/paper_files/paper/2009/file/5751ec3e9a4feab575962e78e006250d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2009/file/5751ec3e9a4feab575962e78e006250d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2009/file/5751ec3e9a4feab575962e78e006250d-Paper.pdf
http://arxiv.org/abs/1612.08083
http://arxiv.org/abs/1612.08083
https://www.sciencedirect.com/science/article/pii/S0893608020300095
https://www.sciencedirect.com/science/article/pii/S0893608020300095
https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1406.3332
https://arxiv.org/abs/1406.3332

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

No More DeLuLu: Physics-Inspired Kernel Networks for Geometrically-Grounded Neural Computation

Nair, V. and Hinton, G. E. Rectified linear units im-
prove restricted boltzmann machines. In Proceed-
ings of the 27th international conference on machine
learning (ICML-10), pp. 807–814, 2010.

Newton, I. Philosophiæ Naturalis Principia Mathe-
matica. S. Pepys, London, 1687.

Rahimi, A. and Recht, B. Random features for large-
scale kernel machines. Advances in neural informa-
tion processing systems, 20, 2007.

Rappaport, T. S. Wireless Communications: Prin-
ciples and Practice. Prentice Hall, Upper Saddle
River, NJ, 2 edition, 2002.

Rudin, W. Functional Analysis. McGraw-Hill, 1991.

Schilling, R. L., Song, R., and Vondraček, Z. Bernstein
Functions: Theory and Applications. De Gruyter,
2nd edition, 2012.

Schölkopf, B. and Smola, A. J. Learning with kernels:
support vector machines, regularization, optimiza-
tion, and beyond. MIT press, 2002.

Schölkopf, B., Smola, A., and Müller, K.-R. Nonlinear
component analysis as a kernel eigenvalue problem.
Neural computation, 10(5):1299–1319, 1998.

Schölkopf, B., Herbrich, R., and Smola, A. J. A
generalized representer theorem. In Computational
Learning Theory, pp. 416–426. Springer, 2001.

Sitzmann, V., Martel, J., Bergman, A., Lindell, D.,
and Wetzstein, G. Implicit neural representations
with periodic activation functions. volume 33, pp.
7462–7473, 2020.

Steinwart, I. On the influence of the kernel on the
consistency of support vector machines. Journal of
Machine Learning Research, 2:67–93, 2001.

Tancik, M., Srinivasan, P., Mildenhall, B., Fridovich-
Keil, S., Raghavan, N., Singhal, U., Ramamoorthi,
R., Barron, J., and Ng, R. Fourier features let net-
works learn high frequency functions in low dimen-
sional domains. volume 33, pp. 7537–7547, 2020.

Tanimoto, T. T. An elementary mathematical theory
of classification and prediction. 1958.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J.,
Jones, L., Gomez, A. N., Kaiser, Ł., and Polosukhin,
I. Attention is all you need. Advances in neural
information processing systems, 30, 2017.

Wendland, H. Scattered Data Approximation. Cam-
bridge University Press, 2005.

Williams, C. and Seeger, M. Using the nyström
method to speed up kernel machines. Advances in
neural information processing systems, 13, 2000.

Williams, C. K. and Rasmussen, C. E. Gaussian pro-
cesses for machine learning, volume 2. MIT press
Cambridge, MA, 2006.

Wilson, A. G., Hu, Z., Salakhutdinov, R., and Xing,
E. P. Deep kernel learning. In Artificial intelligence
and statistics, pp. 370–378. PMLR, 2016.

8

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

No More DeLuLu: Physics-Inspired Kernel Networks for Geometrically-Grounded Neural Computation

A. Appendix

B. Squashing Functions for Non-Negative Scores
The non-negative nature of ⵟ-product scores necessitates specialized normalization functions. We categorize
these into competitive (vector-normalizing) and individualistic (element-wise) functions.

B.1. Competitive Normalization

Competitive functions induce coupling between dimensions, interpreting scores as relative strengths within a
distribution.

Softermax. A generalized normalization function for non-negative scores x ∈ Rd
≥0:

softermaxn(xk, {x}) = xn
k

ϵ+
∑d

i=1 x
n
i

, (2)

where n > 0 controls the distribution sharpness (analogous to inverse temperature) and ϵ > 0 ensures numerical
stability and prevents division by zero for sparse inputs. Unlike softmax, this formulation avoids exponential
terms, improving numerical stability for large input magnitudes.

B.2. Individualistic Squashing

Individualistic functions map scores to bounded intervals element-wise, preserving independence.

Soft-Sigmoid. Maps x ∈ [0,∞) to [0, 1):
σn(x) =

xn

1 + xn
. (3)

This algebraic sigmoid provides a heavy-tailed alternative to the logistic sigmoid, with polynomial rather than
exponential saturation.

Soft-Tanh. Maps x ∈ [0,∞) to [−1, 1):
τn(x) =

xn − 1

xn + 1
. (4)

This corresponds to a rescaled soft-sigmoid: τn(x) = 2σn(x)−1. The parameter n acts as a gain factor, controlling
the steepness of the transition from the distinct states −1 (orthogonality/dissimilarity) to +1 (alignment/simi-
larity).

Figure 6. Algebraic squashing functions for non-negative ⵟ-product scores. These offer bounded, monotonic mappings
without exponential saturation.

B.3. Mathematical Preliminaries

This section collects the key mathematical tools and terminology used throughout the paper.

9

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

No More DeLuLu: Physics-Inspired Kernel Networks for Geometrically-Grounded Neural Computation

B.3.1. Kernel Terminology

Definition 1 (Kernel). A kernel is a function k : X × X → R that measures similarity between two inputs
(Schölkopf & Smola, 2002).
Definition 2 (Gram Matrix). Given points x1, . . . , xn ∈ X , the Gram matrix of k is K ∈ Rn×n with entries
Kij = k(xi, xj).
Definition 3 (Positive Definite Kernel). A symmetric kernel k is positive definite (PD) if its Gram matrix is
positive semidefinite for every finite set of points:

n∑
i,j=1

aiaj k(xi, xj) ≥ 0 for all a ∈ Rn.

Definition 4 (Feature Map and RKHS). A feature map is a map Φ : X → H such that k(x, y) = 〈Φ(x),Φ(y)〉H.
The reproducing kernel Hilbert space (RKHS) of a PD kernel is the Hilbert space where the kernel becomes an
inner product (Aronszajn, 1950).

B.3.2. Closure Properties of PD Kernels

Theorem 7 (PD Closure Properties). If k1, k2 are positive definite kernels on X , then (Schölkopf & Smola,
2002):

1. k1 + k2 is PD (closure under addition)

2. w · k1 is PD for w ≥ 0 (closure under nonnegative scaling)

3. k1 · k2 is PD (Schur product theorem)

4.
∫
ks w(s) ds is PD for w(s) ≥ 0 (closure under nonnegative mixtures)

Context: These closure properties are used in the Mercer kernel proof (Theorem 1) to show that the product of
the polynomial kernel and inverse multiquadric is PD.

B.3.3. Laplace Transform Identity

Theorem 8 (Laplace Identity for 1/y). For any y > 0:

1

y
=

∫ ∞

0

e−sy ds.

Context: This identity converts the rational term 1/(‖x − w‖2 + ε) into an integral over exponentials, enabling
the inverse multiquadric to be expressed as a nonnegative mixture of Gaussian kernels.

B.3.4. Complete Monotonicity and Bernstein Representation

Theorem 9 (Bernstein’s Theorem). A function f : [0,∞) → R is completely monotonic (i.e., (−1)nf (n)(y) ≥ 0
for all n ≥ 0) if and only if it is the Laplace transform of a non-negative measure (Schilling et al., 2012):

f(t) =

∫ ∞

0

e−ts dµ(s), µ ≥ 0.

Context: The function 1/y is completely monotone, so it admits a nonnegative exponential-mixture representation.
This justifies the decomposition used in the Mercer proof.

B.3.5. Integral Exchange (Tonelli-Fubini)

Theorem 10 (Tonelli-Fubini). For σ-finite measure spaces and measurable f ≥ 0 (Folland, 1999):∫
X×Y

f d(µ× ν) =

∫
X

(∫
Y

f dν

)
dµ =

∫
Y

(∫
X

f dµ

)
dν.

10

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

No More DeLuLu: Physics-Inspired Kernel Networks for Geometrically-Grounded Neural Computation

Context: Justifies exchanging integrals and sums in PD kernel proofs: “integral of PD kernels is PD” requires
moving the integral outside the quadratic form.

B.3.6. Information Theory

Theorem 11 (Gibbs’ Inequality). For probability distributions P,Q (Cover & Thomas, 2006):

DKL(P‖Q) =
∑
x

P (x) log P (x)

Q(x)
≥ 0,

with equality iff P = Q.

Context: Referenced in Corollary 1 connecting distributional identity to vanishing KL divergence.

B.3.7. Harmonic Analysis

Theorem 12 (Bochner’s Theorem). A continuous function k : Rd → C is positive definite and translation-
invariant iff it is the Fourier transform of a finite non-negative measure (Rudin, 1991).
Theorem 13 (Hahn-Banach Density Criterion). A linear subspace M ⊂ V is dense in V iff every continuous
linear functional vanishing on M vanishes on V (Rudin, 1991).

Context: Used in the universal approximation proof (Theorem 4).

C. Proofs of Main Theorems
This section provides the proofs for theorems stated in the main body.

C.1. Proof of Theorem 5 (Gradient Direction)

Let s = 〈ei, ej〉 and D = ε+ ‖ei − ej‖2. Then ⵟ = s2/D.

Using the quotient rule:

∇eiⵟ =
2s · ∇eis ·D − s2 · ∇eiD

D2
.

We have ∇eis = ej and ∇eiD = 2(ei − ej). Substituting:

∇eiⵟ =
2sej ·D − 2s2(ei − ej)

D2
=

2s

D

(
ej −

s(ei − ej)
D

)
.

C.2. Proof of Proposition 3 (Lipschitz Continuity)

Fix ε > 0 and assume ‖x‖2 ≤ 1 and ‖w‖2 ≤ 1. Let s = 〈x,w〉 and D = ε + ‖x − w‖22. Then D ≥ ε. From the
gradient formula (Theorem 5):

‖∇xⵟ‖ ≤ 2|s|
D

(
‖w‖2 +

|s| · ‖x − w‖2
D

)
.

For ‖x‖2, ‖w‖2 ≤ 1, we have |s| = |〈x,w〉| ≤ 1 and ‖x − w‖2 ≤ 2, so:

‖∇xⵟ‖ ≤ 2

ε

(
1 +

2

ε

)
=

2

ε
+

4

ε2
.

C.3. Proof of Proposition 5 (Extremal Similarity)

(1) The numerator 〈p, q〉2 = (
∑

i piqi)
2
= 0 if and only if all terms piqi = 0, which occurs precisely when supports

are disjoint.

(2) If supp(p) ∩ supp(q) = ∅, there exists i with pi > 0 and qi = 0, making KL(p‖q) =
∑

i pi log(pi/qi) = ∞.

11

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

No More DeLuLu: Physics-Inspired Kernel Networks for Geometrically-Grounded Neural Computation

Cross-entropy (used in Theorem 2). Under the same condition, the cross-entropy

H(p, q) = −
∑
i

pi log qi

contains a term with pi > 0 and qi = 0, hence − log qi = − log 0 = +∞ and therefore H(p, q) = ∞ under the
standard convention log 0 = −∞.

C.4. Proof of Theorem 2 (Minimal Similarity and Statistical Orthogonality)

Let p, q ∈ ∆n−1 and ε > 0. Since ‖p − q‖22 + ε > 0, we have ⵟ(p, q) = 0 if and only if p⊤q = 0. On the simplex,
piqi ≥ 0 for all i, so

∑
i piqi = 0 holds if and only if piqi = 0 for all i, i.e. supp(p) ∩ supp(q) = ∅. In this case

DKL(p‖q) = ∞ by the argument in Proposition 5, and H(p, q) = ∞ by the cross-entropy note above.

C.5. Proof of Theorem 3 (Maximal (Singular) Similarity)

Fix ε > 0 and define ⵟε(p, q) := (p⊤q)2
∥p−q∥2

2+ε
. For any p, q ∈ ∆n−1, the denominator is at least ε, hence ⵟε(p, q) is

finite. If q = p, then ‖p − q‖22 = 0 and

ⵟε(p, p) =
(p⊤p)2

ε
=

‖p‖42
ε

,

so ⵟε(p, p) → ∞ as ε → 0+.

Singular joint limit. Let (qk)k≥1 ⊂ ∆n−1 satisfy qk 6= p and ‖qk − p‖2 → 0, and let εk → 0+. Then
(p⊤qk)

2 → (p⊤p)2 = ‖p‖42 > 0 while ‖p − qk‖22 + εk → 0. Therefore ⵟεk(p, qk) → ∞.

C.6. Proof of Corollary 1 (Distributional Identity and KL)

By Gibbs’ inequality (see e.g. Cover & Thomas (2006)), DKL(p‖q) ≥ 0 with equality if and only if p = q. When
p = q, the cross-entropy satisfies H(p, q) = H(p).

C.7. Proof of Proposition 1 (Self-Regulation)

For x = ku:
ⵟ(w, ku) = (kw⊤u)2

‖w − ku‖2 + ε
=

k2(w⊤u)2
‖w‖2 − 2kw⊤u + k2 + ε

.

Dividing numerator and denominator by k2:

ⵟ(w, ku) = (w⊤u)2
‖w‖2/k2 − 2w⊤u/k + 1 + ε/k2

→ (w⊤u)2 = ‖w‖2 cos2 θ.

C.8. Proof of Proposition 2 (Gradient Decay)

From Theorem 5, with s = 〈x,w〉 and D = ε+ ‖x − w‖22,

‖∇xⵟ‖ ≤ 2|s|
D

(
‖w‖2 +

|s| ‖x − w‖2
D

)
.

As ‖x‖ → ∞ with fixed w, we have |s| = O(‖x‖), ‖x − w‖2 = O(‖x‖), and D = O(‖x‖2), hence the right-hand
side is O(1/‖x‖) → 0.

C.9. Proof of Corollary 2 (Dimensional Scaling)

Assume x,w ∈ Rd have i.i.d. zero-mean coordinates with Var(xi) = Var(wi) = σ2 independent of d, and assume
in addition that x and w are independent. Then

E
[
(w⊤x)2

]
=

d∑
i=1

E[w2
i x

2
i] = d σ4 = Θ(d),

12

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

No More DeLuLu: Physics-Inspired Kernel Networks for Geometrically-Grounded Neural Computation

since cross-terms vanish by independence and zero mean. Moreover,

E
[
‖w − x‖22

]
= E

[
‖w‖22

]
+ E

[
‖x‖22

]
− 2E[w⊤x] = 2dσ2 = Θ(d).

The above shows the numerator and denominator scale linearly in d in expectation, but to control the expectation
of the ratio we use Cauchy–Schwarz. Assume in addition the coordinates are sub-Gaussian with parameter
independent of d (hence have finite fourth moments). Let U := (w⊤x)2 and V := ‖w − x‖22, so ⵟ = U/(V + ε).
Then E[U2] = E[(w⊤x)4] = O(d2).

Bounding the inverse square moment. Let zi := wi − xi. By independence and sub-Gaussianity, (zi)di=1

are i.i.d. mean-zero sub-Gaussian with E[z2i] = 2σ2, and

V =

d∑
i=1

z2i .

Since z2i −E[z2i] is sub-exponential, Bernstein’s inequality implies there exists c > 0 (independent of d) such that

P
(
V ≤ 1

2E[V]
)
= P

(
V ≤ dσ2

)
≤ e−cd.

Therefore, for fixed ε > 0,

E
[
(V + ε)−2

]
= E

[
(V + ε)−21{V≥dσ2}

]
+ E

[
(V + ε)−21{V <dσ2}

]
≤ 1

(dσ2)2
+

1

ε2
e−cd = O(d−2).

Therefore
E[ⵟ] = E

[
U

V + ε

]
≤
√

E[U2]
√
E[(V + ε)−2] = O(1),

as d → ∞.

C.10. Proof of Theorem 6 (RKHS Existence)

Since kⵟ is positive semi-definite on every compact set K ⊂ Rd (Theorem 1), the Moore–Aronszajn theorem
(Aronszajn, 1950) guarantees the existence of a (unique up to isometry) RKHS HK and feature map ϕK : K →
HK such that kⵟ(x, y) = 〈ϕK(x), ϕK(y)〉HK

for all x, y ∈ K.

C.11. Proof of Proposition 4 (Input Robustness)

Assume ‖w‖2 ≤ 1 and x, x′ lie in the unit ball. By the mean value theorem on the line segment between x and
x′ (which stays in the unit ball by convexity) and Lipschitz continuity (Proposition 3):

|ⵟ(w, x′)− ⵟ(w, x)| ≤ L · ‖δ‖ =

(
2

ε
+

4

ε2

)
δ.

In particular, for fixed ε this is O(δ) (and for small ε the constant scales as O(ε−2)).

C.12. Proof of Lemma 1 (Analyticity)

The ⵟ-product is a ratio of polynomials where the denominator ‖w−x‖2+ ε ≥ ε > 0 is bounded away from zero.
Ratios of polynomials with non-vanishing denominators are real-analytic.

C.13. Justification for Remark 1 (Optimal ε)

For input data with additive noise n ∼ N (0, σ2I), the noise contribution to ‖w − x‖2 is O(dσ2) in expectation.
Setting ε∗ ∝ dσ2 ensures the noise floor matches the stability constant, maximizing the signal-to-noise ratio of
gradients.

13

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

No More DeLuLu: Physics-Inspired Kernel Networks for Geometrically-Grounded Neural Computation

C.14. Topological Properties of Neural Activation Functions

Theorem 14 (Non-Homeomorphism of Standard Activations). Let T : Rd → Rm be defined by T (x) = ϕ(Wx+b)
where W ∈ Rm×d, b ∈ Rm, and ϕ is an element-wise activation function. Then:

1. If ϕ = ReLU and there exist two distinct inputs x1 6= x2 such that Wx1 + b ≤ 0 and Wx2 + b ≤ 0
coordinatewise, then T is not injective.

2. If ϕ ∈ {sigmoid, tanh}, then T fails to be bi-Lipschitz. For inputs z1, z2 in the saturation regime (|z| → ∞),
‖ϕ(z1)− ϕ(z2)‖ → 0 regardless of ‖z1 − z2‖.

3. In particular, in the ReLU case above, T is not a homeomorphism onto its image (since it is not injective).
In the sigmoid/tanh case, T can be a homeomorphism onto its image when W is injective, but it is not a
bi-Lipschitz embedding (metric structure can be arbitrarily compressed in saturation).

Proof. (1) ReLU non-injectivity under clipping: For ϕ(z) = max(0, z), if (Wx + b)i ≤ 0 then the i-th output
coordinate equals 0. If there exist x1 6= x2 such that Wx1 + b ≤ 0 and Wx2 + b ≤ 0 coordinatewise, then
T (x1) = T (x2) = 0, hence T is not injective.

(2) Sigmoid/tanh saturation: Consider σ(z) = 1/(1 + e−z). For z → +∞, σ(z) → 1 with |σ(z1) − σ(z2)| ≤
e− min(z1,z2)|z1 − z2| for large z1, z2. Thus the Lipschitz constant in the saturation regime approaches zero—
distances are compressed. Similarly for tanh(z) = 2σ(2z)− 1.

(3) Topological vs metric structure: By (1), ReLU can fail injectivity, hence cannot be a homeomorphism onto its
image. By (2), sigmoid/tanh fail bi-Lipschitz (no uniform lower Lipschitz bound), which is a metric distortion
statement and does not by itself preclude homeomorphism when W is injective.

Remark 2 (Information loss under non-invertible activations (informal)). By the data processing inequality,
representations obtained by applying a deterministic non-invertible nonlinearity (e.g. ReLU clipping) cannot
increase information about the input. Making this statement fully rigorous requires specifying a probabilistic model
(often with additive noise) to avoid pathologies of mutual information for continuous deterministic transforms.
Remark 3 (Contrast with ⵟ-Product). The ⵟ-product achieves non-linearity through its rational structure
Kⵟ(w, x) = (w⊤x)2

∥w−x∥2+ε without collapsing regions. For ε > 0, the mapping is:

• Real-analytic (Lemma 1)

• Lipschitz on bounded sets (Proposition 3)

• Self-regulating with bounded output (Proposition 1)

The denominator ε > 0 prevents singularities, while the squared numerator provides non-linearity without hard
thresholding.

C.15. Proof of Theorem 1 (Mercer Property)

Fix ε > 0 and let K ⊂ Rd be compact.

Step 1: Integral representation. For any a > 0,

1

a
=

∫ ∞

0

e−ta dt.

Since ‖x− w‖2 + ε > 0 for all x,w ∈ Rd, we apply this identity with a = ‖x− w‖2 + ε to obtain

1

‖x− w‖2 + ε
=

∫ ∞

0

e−tεe−t∥x−w∥2

dt. (5)

14

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

No More DeLuLu: Physics-Inspired Kernel Networks for Geometrically-Grounded Neural Computation

Multiplying by (x⊤w)2 yields

kⵟ(x,w) =

∫ ∞

0

(x⊤w)2e−tεe−t∥x−w∥2

dt. (6)

Step 2: Positive definite components. For each t > 0, the Gaussian kernel

gt(x,w) = e−t∥x−w∥2

is positive definite on Rd (Schölkopf & Smola, 2002). The polynomial kernel

p(x,w) = (x⊤w)2

is also positive definite, since
(x⊤w)2 = 〈x⊗ x, w ⊗ w〉,

which is the linear kernel associated with the feature map Φ(x) = x⊗ x.

Step 3: Product kernels. The pointwise product of positive definite kernels is positive definite (Schölkopf &
Smola, 2002). Hence, for each t > 0, the kernel

kt(x,w) := (x⊤w)2e−t∥x−w∥2

is positive definite on Rd. Multiplication by the positive scalar e−tε preserves positive definiteness.

Step 4: Uniform domination on compact sets. Since K is compact, there exists M > 0 such that ‖x‖ ≤ M
for all x ∈ K. For all x,w ∈ K and all t > 0,

0 ≤ (x⊤w)2e−t∥x−w∥2

≤ ‖x‖2‖w‖2 ≤ M4.

Therefore,
0 ≤ (x⊤w)2e−tεe−t∥x−w∥2

≤ M4e−tε,

and the dominating function t 7→ M4e−tε belongs to L1(0,∞).

Step 5: Preservation of positive definiteness under integration. Let {xi}ni=1 ⊂ K and {ci}ni=1 ⊂ R. For
each t > 0, since kt is positive definite,

n∑
i,j=1

cicjkt(xi, xj) ≥ 0.

By Tonelli’s theorem, justified by the domination in Step 4, we may interchange summation and integration:

n∑
i,j=1

cicjkⵟ(xi, xj) =

∫ ∞

0

n∑
i,j=1

cicj(x
⊤
i xj)

2e−tεe−t∥xi−xj∥2

dt

≥ 0.

Thus kⵟ is positive definite on K.

Step 6: Continuity and Mercer property. For each fixed t > 0, the integrand in (6) is continuous in
(x,w). By the domination established in Step 4, the integral converges uniformly on K ×K, implying that kⵟ
is continuous. The kernel is symmetric by construction.

Since kⵟ is symmetric, continuous, and positive definite on the compact set K, Mercer’s theorem applies (Mercer,
1909; Schölkopf & Smola, 2002). Therefore, kⵟ is a Mercer kernel on K.

15

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

No More DeLuLu: Physics-Inspired Kernel Networks for Geometrically-Grounded Neural Computation

C.16. Proof of Theorem 4 (Universal Approximation)

Let X ⊂ Rd be compact. The function class F consists of g(x;w, b) = (x⊤w+b)2

∥x−w∥2+ε .

Step 1: Generating the IMQ kernel. Differentiating twice with respect to bias yields:

∂2

∂b2
g(x;w, b) = 2(ε+ ‖x − w‖2)−1 = 2KIMQ(x,w).

Equivalently, for any fixed step h > 0,

g(x;w, b+ h)− 2g(x;w, b) + g(x;w, b− h)

h2
=

2

ε+ ‖x − w‖2
= 2KIMQ(x,w),

so IMQ translates belong to the span of ⵟ-atoms (indeed, they are exactly a 3-term linear combination for any
fixed h > 0).

Step 2: Density of IMQ Networks. The inverse multiquadric kernel KIMQ(x,w) = (ε+‖x−w‖2)−1 is a universal
kernel on compact subsets of Rd (its RKHS is dense in C(X) under the sup norm); see e.g. Steinwart (2001);
Micchelli et al. (2006); Wendland (2005). Consequently, finite linear combinations of translates KIMQ(·,wi) are
dense in C(X).

Conclusion. Since F contains the span of IMQ kernels, F is dense in C(X).

C.17. Extended Proof of Theorem 6 (RKHS Existence)

The existence follows from the Moore-Aronszajn theorem (Aronszajn, 1950) applied to the PSD kernel (Theo-
rem 1).
Remark 4 (Explicit feature map (sketch)). Since kⵟ is positive definite (Theorem 1), the Moore–Aronszajn
theorem guarantees the existence of a feature map into the associated RKHS. One may also obtain an explicit
construction by combining the tensor feature map for (x⊤w)2 with the Laplace-mixture representation of 1/(ε+
‖x − w‖2) in (5) and forming the corresponding direct-integral Hilbert space. We omit the measure-theoretic
details.

C.18. Neural Tangent Kernel Analysis

Proposition 6 (NTK Limit of ⵟ-Networks). Consider a single-layer ⵟ-network f(x;θ) =
∑m

i=1 αiⵟ(wi, x) with
random initialization. In the infinite-width limit m → ∞, the Neural Tangent Kernel is:

KNTK(x, x′) = Ew [ⵟ(w, x) · ⵟ(w, x′)] + Ew
[
∇wⵟ(w, x)⊤∇wⵟ(w, x′)

]
.

This kernel is positive definite and inherits the orthogonality-sensitivity of the ⵟ-product.

Proof. The network output is f(x) =
∑m

i=1 αiⵟ(wi, x). The parameters are θ = ∪i{αi,wi}. The tangent kernel
is defined as KNTK(x, x′) = 〈∇θf(x),∇θf(x′)〉. The gradients are:

∇αi
f(x) = ⵟ(wi, x),

∇wi
f(x) = αi∇wⵟ(wi, x).

The inner product sums over all i = 1 . . .m:

Km(x, x′) =

m∑
i=1

ⵟ(wi, x)ⵟ(wi, x′) +

m∑
i=1

α2
i 〈∇wⵟ(wi, x),∇wⵟ(wi, x′)〉.

In the infinite width limit m → ∞, assuming appropriate scaling αi ∼ N (0, 1/m) or fixed readouts with
αi ∼ O(1/

√
m), the sums converge to expectations over the initialization distribution of w. The first term

corresponds to the covariance of the features (conjugate kernel), and the second term involves the gradients.
Since ⵟ is a Mercer kernel (Theorem 1), it is positive semi-definite. The second term is a sum of inner products,
also PSD. Thus KNTK � 0.

16

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

No More DeLuLu: Physics-Inspired Kernel Networks for Geometrically-Grounded Neural Computation

Remark 5 (Training Dynamics in the NTK Regime). In the infinite-width limit, gradient descent on ⵟ-networks
converges to kernel regression with KNTK. The orthogonality-sensitive nature of the ⵟ-product carries over to the
NTK, meaning that the limiting kernel naturally encourages orthogonal representations for different-class inputs.
Theorem 15 (Convergence of Deep ⵟ-Networks in Lazy Regime). Consider a deep neural network fθ : Rdin → Rd

with L hidden layers of width m. Let the embeddings ei = fθ(xi) be trained under LAFCL. Under the following
assumptions:

1. Infinite-width limit: m → ∞ with fixed depth L.

2. Lazy training: Learning rate η scales as η = O(1/m) ensuring the NTK stays approximately constant (Jacot
et al., 2018).

3. NTK is non-degenerate: λmin(Θ
ⵟ) > 0 on the training data.

The embedding dynamics converge to a critical point of LAFCL.

Proof. Step 1: NTK convergence (Assumption 1–2). In the infinite-width limit with appropriately scaled learning
rate, the NTK:

Θⵟ
ij =

〈
∂fθ(xi)

∂θ
,
∂fθ(xj)

∂θ

〉
converges to a deterministic positive semi-definite kernel at initialization and remains approximately constant
throughout training (Jacot et al., 2018). This is the “lazy training” or “kernel regime.”

Step 2: Preconditioned gradient flow. With fixed Θⵟ, the embedding dynamics become:

Ė = −Θⵟ∇ELAFCL.

This is a preconditioned gradient flow with the NTK as the preconditioner.

Step 3: Lyapunov analysis. The loss LAFCL serves as a Lyapunov function:

dL
dt

= −∇L⊤Θⵟ∇L ≤ 0,

since Θⵟ � 0. Under Assumption 3, strict decrease occurs whenever ∇L 6= 0.

Step 4: Convergence. Since L ≥ 0 is bounded below and monotonically decreasing, the trajectory converges. By
the analyticity of LAFCL in the embedding space (Lemma 1), Łojasiewicz’s theorem guarantees convergence to a
single critical point.

C.19. Computational Complexity Analysis

We analyze the computational complexity of the ⵟ-product layer and prove it maintains the same asymptotic
complexity as standard linear layers.

C.19.1. Layer Definition

For input X ∈ RB×d and weights W ∈ Rn×d, the ⵟ-product layer computes output Y ∈ RB×n:

Yij =
(X⊤

i Wj)
2

‖Xi −Wj‖2 + ε

Using the algebraic identity ‖Xi −Wj‖2 = ‖Xi‖2 + ‖Wj‖2 − 2X⊤
i Wj :

Yij =
S2
ij

‖Xi‖2 + ‖Wj‖2 − 2Sij + ε
, S = XW⊤

17

935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

No More DeLuLu: Physics-Inspired Kernel Networks for Geometrically-Grounded Neural Computation

C.19.2. Forward Pass Complexity

Theorem 16 (Forward Complexity). The ⵟ-product forward pass requires Θ(Bnd) operations:

1. GEMM: S = XW⊤ . 2Bnd

2. Row norms: ‖Xi‖2 .Bd

3. Weight norms: ‖Wj‖2 (cached) . nd

4. Element-wise: square, assemble, reciprocal, multiply . 5Bn

Total: Tforward = 2Bnd+Bd+ nd+ 5Bn = Θ(Bnd).

C.19.3. Backward Pass Complexity

Proposition 7 (Gradient Formulas). For Y = S2/D with D = ‖X‖2 + ‖W‖2 − 2S + ε and S = X⊤W :

∇XY =
2S(‖W‖2 + ‖X‖2 + ε− S)

D2
W − 2S2

D2
X (7)

∇WY =
2S(‖W‖2 + ‖X‖2 + ε− S)

D2
X − 2S2

D2
W (8)

Theorem 17 (Backward Complexity). Given upstream gradient G ∈ RB×n:

1. Scalar gradient: GS = G� ∂Y /∂S . 6Bn

2. Weight gradient: ∂L/∂W = G⊤
SX . 2Bnd

3. Input gradient: ∂L/∂X = GSW .2Bnd

Total: Tbackward = 4Bnd+ 6Bn+O(Bd+ nd) = Θ(Bnd).

C.19.4. Asymptotic Comparison

Component Linear ⵟ-Product
Forward main 2Bnd 2Bnd
Forward aux Bn Bd+ nd+ 5Bn
Backward main 4Bnd 4Bnd
Backward aux 2Bn 6Bn+Bd+ nd

Total Θ(Bnd) Θ(Bnd)
Overhead 1 1 + 1

2n + 1
2B + 2

d

Table 3. Complexity comparison. Overhead < 5% for d, n ≥ 64, B ≥ 16.

C.19.5. Per-Neuron FLOPs

Method FLOPs Relative
Linear + ReLU 2d+ 1 1.00×
Linear + GELU 2d+ 15 ≈ 1.03×
ⵟ-product (naive) 5d+ 1 ≈ 2.5×
ⵟ-product (optimized) 4d+ 4 ≈ 2.0×

Table 4. Per-neuron FLOPs. Optimized variant avoids redundant norm computation.

18

990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

No More DeLuLu: Physics-Inspired Kernel Networks for Geometrically-Grounded Neural Computation

C.19.6. Numerical Stability

Remark 6 (Stability Properties). The ⵟ-product inherits numerical stability from:

1. Bounded outputs: Self-regulation (Proposition 1) ensures ⵟ ≤ ‖W‖4/ε

2. Lipschitz gradients: ‖∇ⵟ‖ ≤ L = O(1/ε2) (Proposition 3)

3. Gradient decay: Outliers produce vanishing gradients (Proposition 2)

This eliminates the need for gradient clipping or normalization layers.

C.19.7. Implementation Optimizations

1. Algebraic identity: Use ‖X −W‖2 = ‖X‖2 + ‖W‖2 − 2X⊤W to reuse GEMM

2. Norm caching: Cache ‖W‖2 between forward passes

3. Kernel fusion: Fuse element-wise operations for memory efficiency

4. Mixed precision: Use FP32 for denominator, BF16/FP16 elsewhere

Empirical performance: 0.85–0.92× linear throughput; 15–25% memory reduction from eliminated activation
storage.

D. XOR Separability Analysis
This section provides a formal analysis of why a single ⵟ-product unit can solve the XOR problem, which is not
linearly separable.

D.1. Linear Inseparability of XOR

Proposition 8 (XOR is Not Linearly Separable). Let X = {(0, 0), (0, 1), (1, 0), (1, 1)} with labels y = {0, 1, 1, 0}
(XOR function). There exists no hyperplane {x : w⊤x + b = 0} that separates the classes.

Proof. For a separating hyperplane to exist, we require sign(w⊤x+ b) to match y for all x ∈ X . This yields four
constraints that form a contradiction: the positive class points (0, 1), (1, 0) and negative class points (0, 0), (1, 1)
cannot be separated by any linear function.

D.2. Single-Unit ⵟ-Product Solution

Theorem 18 (ⵟ-Product Solves XOR). A single ⵟ-product unit with weight w = [1,−1]⊤ and ε > 0 separates
the XOR classes:

x w⊤x ⵟ(w, x)
(0, 0) 0 0
(0, 1) −1 1/(5 + ε)
(1, 0) 1 1/(1 + ε)
(1, 1) 0 0

The threshold τ = 0 separates class 1 (positive response) from class 0 (zero response).

Proof. For x = (0, 0): w⊤x = 0, so ⵟ = 02/(‖w‖2 + ε) = 0.

For x = (1, 1): w⊤x = 1− 1 = 0, so ⵟ = 0.

For x = (0, 1): w⊤x = −1, ‖w − x‖2 = 1 + 4 = 5, so ⵟ = 1/(5 + ε) > 0.

19

1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099

No More DeLuLu: Physics-Inspired Kernel Networks for Geometrically-Grounded Neural Computation

For x = (1, 0): w⊤x = 1, ‖w − x‖2 = 0 + 1 = 1, so ⵟ = 1/(1 + ε) > 0.

Thus ⵟ > 0 for the positive class and ⵟ = 0 for the negative class.

D.3. Geometric Mechanism

Corollary 3 (Orthogonality-Based Separation). The solution exploits the ⵟ-product’s orthogonality property:
ⵟ(w, x) = 0 if and only if w ⊥ x (Theorem 2). The weight w = [1,−1]⊤ is orthogonal to exactly the negative
class points (0, 0) and (1, 1).
Remark 7 (Superposition Property). The squared numerator (w⊤x)2 induces superposition: the response is
identical for x and −x. This enables classifying antipodal points similarly, which is essential for XOR where
(0, 1) and (1, 0) must share a class despite [1,−1]⊤(0, 1) = −1 and [1,−1]⊤(1, 0) = +1.

D.4. Gradient Stability

Proposition 9 (Well-Posed Optimization Landscape). The ⵟ-product’s gradient properties (Proposition 2, The-
orem 5) ensure:

1. No vanishing gradients at x = 0: the gradient is defined and non-degenerate for ε > 0

2. Lipschitz continuity prevents exploding gradients (Proposition 3)

3. Outlier robustness: gradient magnitude decays as O(1/‖x‖) for distant inputs

These properties contrast with ReLU neurons, which suffer from ”dead neuron” problems when w⊤x < 0, and
linear neurons, which cannot separate XOR at all.

D.5. Connection to Kernel Theory

The single-unit XOR solution demonstrates the expressive power of a Mercer kernel (Theorem 1) in the primal
form. The ⵟ-product’s RKHS existence (Theorem 6) guarantees that this solution lies within a well-defined
function space, connecting to classical kernel methods while avoiding the computational overhead of Gram
matrix inversion.

E. Decision Boundary Analysis
This section provides a formal analysis of the decision boundaries and space-partitioning behavior induced by
ⵟ-product neurons.

E.1. Localized Response Fields

Proposition 10 (Bounded Activation Landscape). For fixed w and ε > 0, the ⵟ-product satisfies:

1. 0 ≤ ⵟ(w, x) ≤ ‖w‖4/ε for all x

2. ⵟ(w,w) = ‖w‖4/ε (maximum at identity)

3. limk→∞ ⵟ(w, ku) = ‖w‖2 cos2 θ for unit u (Proposition 1)

Thus each neuron defines a bounded, localized response field centered at its prototype.

Proof. (1) Non-negativity is immediate. The maximum occurs when the denominator is minimized (x = w),
giving ‖w‖4/ε. (2) Direct substitution. (3) From Proposition 1.

20

1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154

No More DeLuLu: Physics-Inspired Kernel Networks for Geometrically-Grounded Neural Computation

E.2. Non-Linear Decision Boundaries

Theorem 19 (Algebraic Decision Surfaces). The decision boundary between prototypes wi and wj is the algebraic
surface:

〈wi, x〉2(‖wj − x‖2 + ε) = 〈wj , x〉2(‖wi − x‖2 + ε).

This surface is generically non-linear (quartic in x), smooth by analyticity (Lemma 1), and Lipschitz-continuous
in its parameters (Proposition 3).

Proof. The boundary is defined by ⵟ(wi, x) = ⵟ(wj , x). Cross-multiplying:

〈wi, x〉2
‖wi − x‖2 + ε

=
〈wj , x〉2

‖wj − x‖2 + ε

yields the stated polynomial equation. Expanding shows terms up to degree 4 in x. Smoothness follows from
Lemma 1 since the ⵟ-product is real-analytic. Lipschitz continuity of the boundary location follows from Propo-
sition 3.

Remark 8 (Contrast with Linear Boundaries). Conventional linear classifiers produce hyperplane boundaries
(wi − wj)

⊤x = 0. The ⵟ-product’s quartic surfaces enable more flexible class regions while maintaining the
smoothness properties required for stable optimization.

E.3. Orthogonality and Maximal Separation

Corollary 4 (Orthogonal Prototypes Induce Maximal Separation). If prototypes satisfy 〈wi,wj〉 = 0 for i 6= j,
then:

1. ⵟ(wi,wj) = 0 (zero cross-response)

2. On the probability simplex, this corresponds to KL(wi‖wj) = ∞ (Theorem 2)

3. Decision boundaries are maximally separated from prototype cores

Proof. (1) If 〈wi,wj〉 = 0, the numerator of ⵟ(wi,wj) vanishes. (2) By Theorem 2, zero ⵟ-product on the simplex
implies disjoint supports and infinite KL divergence. (3) At x = wi: ⵟ(wi,wi) = ‖wi‖4/ε while ⵟ(wj ,wi) = 0.
Since ‖wi‖4/ε 6= 0, the prototype core cannot lie on the decision boundary.

E.4. Gradient-Based Competitive Dynamics

Proposition 11 (Gradient Structure for Prototype Learning). The gradient of the ⵟ-product with respect to
prototype w is (Theorem 5):

∇wⵟ(w, x) = 2〈w, x〉
ε+ ‖w − x‖2

(
x +

〈w, x〉(w − x)
ε+ ‖w − x‖2

)
.

Key properties:

1. Gradients decay for distant inputs (Proposition 2)

2. Perturbation robustness on bounded domains: |∆ⵟ| ≤
(
2
ε + 4

ε2

)
δ (Proposition 4)

3. Lipschitz gradients with constant O(1/ε2) (Proposition 3)

This gradient structure ensures stable competitive learning: neurons specialize on nearby, aligned inputs while
remaining robust to outliers and noise.

21

1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209

No More DeLuLu: Physics-Inspired Kernel Networks for Geometrically-Grounded Neural Computation

E.5. Softmax Tessellation

With softmax normalization over ⵟ-product responses:

pi =
exp(ⵟ(wi, x))∑C
j=1 exp(ⵟ(wj , x))

,

the input space is tessellated into regions Ri = {x : pi > pj for all j 6= i}. By Theorem 19, each Ri has smooth,
curved boundaries. The self-regulation property (Proposition 1) ensures that these regions remain well-defined
even for extreme inputs, preventing the unbounded confidence growth observed in linear classifiers.

E.6. Language Model Experiments: Detailed Configuration

This section provides the detailed experimental configurations for the language modeling experiments comparing
a standard GPT-2 with our Aether-GPT2 implementation. Both models were trained on identical datasets and
hardware to ensure a fair comparison. The primary architectural distinction is the replacement of conventional
linear layers, activation functions, and layer normalization in GPT-2 with ⵟ-product operations in Aether-
GPT2. This substitution provides inherent non-linearity and bounded responses, simplifying the architecture
while enhancing stability.

Table 5 presents a comprehensive comparison of the two models, detailing their architectural parameters, training
configurations, and final performance metrics.

Table 5. GPT-2 vs Aether-GPT2 detailed comparison (2.5B tokens from FineWeb).

Parameter GPT-2 Aether
Architecture

Total Params 124M ∼124M
Embed Params 39M 39M
Non-Embed Params 85M ∼85M
Embed Dim 768 768
MLP Hidden Dim 3072 3072
Layers 12 12
Heads 12 12
Activation GeLU ⵟ
LayerNorm Yes No
Bias No No

Training
Optimizer Novograd Novograd
LR 0.003 0.003
Batch Size 32 32
Context 1024 1024
Vocab Size 50,257 50,257
Tokenizer GPT-2 GPT-2

Performance
Val Loss (FP32) 2.43 2.29
Val Loss (BF16) 3.03 2.69

E.6.1. Architectural Simplification and Efficiency

The substitution of linear-activation-normalization blocks with a single ⵟ-product operation per layer yields
significant architectural simplification. This change leads to:

• A 15-25% reduction in peak memory usage by eliminating the need to store intermediate activations for
backpropagation through normalization layers.

22

1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264

No More DeLuLu: Physics-Inspired Kernel Networks for Geometrically-Grounded Neural Computation

• Reduced gradient computation complexity.

• A comparable FLOP count with only a modest constant-factor overhead.

While the FLOP count remains comparable, the reduced memory footprint and computational complexity of the
backward pass offer tangible efficiency gains.

Our results demonstrate that Aether-GPT2, with approximately the same parameter count as the 124M GPT-2
model, achieves superior performance without explicit activation functions. The final validation loss of 2.29
for Aether-GPT2, compared to 2.43 for the baseline, underscores the efficacy of the ⵟ-product’s inherent non-
linearity.

E.6.2. Training Dynamics and Loss Progression

The training dynamics of Aether-GPT2 and baseline GPT-2 were analyzed over 2.5B tokens from the FineWeb
dataset using a Kaggle TPU v5-8 environment. Aether-GPT2 consistently achieves lower loss on both training
and validation sets (see Figure 5 in the main text). The bounded nature of the ⵟ-product contributes to stable
training dynamics, even without layer normalization.

E.6.3. Mixed-Precision Training with BFloat16

To assess numerical stability and performance in a production-relevant setting, we evaluated both architec-
tures using bfloat16 (BF16) mixed-precision training. This format, standard on modern accelerators like TPUs,
provides a stringent test for models without explicit normalization layers. Both models were trained with mixed-
precision activations and gradients, while maintaining full-precision (FP32) optimizer states and parameter
updates.

The performance advantage of Aether-GPT2 persists under BF16, as shown in Figure 7. Aether-GPT2 achieves
a final validation loss of 2.69, an 11.2% relative improvement over the baseline’s 3.03. This result confirms that
the architectural benefits are not artifacts of full-precision arithmetic and that the ⵟ-product’s bounded response
provides robust numerical stability without requiring layer normalization. The consistent performance gains in
mixed-precision training underscore the practicality of ⵟ-product layers as a drop-in replacement for conventional
transformer blocks in large-scale models.

0 10000 20000 30000 40000 50000 60000 70000
Training Steps

2.0

2.5

3.0

3.5

4.0

4.5

Tr
ai

ni
ng

 L
os

s

Training Loss

yat-bf16
linear-bf16

10000 20000 30000 40000 50000 60000 70000
Training Steps

2.7

2.8

2.9

3.0

3.1

Va
lid

at
io

n
Lo

ss

Validation Loss

yat-bf16
linear-bf16

Figure 7. BF16 training (left) and validation (right) loss. Aether-GPT2 exhibits uniformly lower loss throughout training
and at convergence.

E.7. Use of Large Language Models (LLMs)

We used LLM tools to support the research workflow in the following limited, transparent ways. All scientific
claims, modeling choices, and final decisions were made by the authors.

Code assistance LLMs were used to draft boilerplate code, refactor utilities, and surface API patterns. All
generated code was reviewed, tested, and integrated by the authors.

23

1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319

No More DeLuLu: Physics-Inspired Kernel Networks for Geometrically-Grounded Neural Computation

Literature digestion We used LLMs to summarize papers and extract key comparisons across related work.
Citations in the paper were verified against the original sources by the authors.

Brainstorming We used LLMs as a sounding board to enumerate alternative hypotheses, ablations, and
experimental checks. Only ideas that survived empirical or theoretical scrutiny were included.

Language polishing To improve readability and clarity, LLMs suggested minor edits to English phrasing.
Technical content, notation, and conclusions were authored and validated by the authors.

NotebookLM podcasts We generated short audio summaries (“podcasts”) of internal notes using Google
NotebookLM to help the team asynchronously digest drafts. These summaries did not introduce new claims and
were based solely on our own materials.

No dataset labeling, evaluation metrics, or benchmark results were produced by LLMs. The authors take
responsibility for all content and errors.

24

	Introduction
	Methodology: A Framework for Geometry-Aware Computation
	Neural Matter Network (NMN) Layers
	Architectural Implementation

	Results and Discussion
	XOR Separability with a Single Unit
	Decision Boundaries and Localization
	MNIST Classification
	Language Modeling: Aether-GPT2

	Related Work
	Kernel Methods and Neural Tangent Kernels
	Alternative Neural Operators
	Geometric Foundations

	Conclusion
	Appendix
	Squashing Functions for Non-Negative Scores
	Competitive Normalization
	Individualistic Squashing
	Mathematical Preliminaries
	Kernel Terminology
	Closure Properties of PD Kernels
	Laplace Transform Identity
	Complete Monotonicity and Bernstein Representation
	Integral Exchange (Tonelli-Fubini)
	Information Theory
	Harmonic Analysis

	Proofs of Main Theorems
	Proof of Theorem 5 (Gradient Direction)
	Proof of Proposition 3 (Lipschitz Continuity)
	Proof of Proposition 5 (Extremal Similarity)
	Proof of Theorem 2 (Minimal Similarity and Statistical Orthogonality)
	Proof of Theorem 3 (Maximal (Singular) Similarity)
	Proof of Corollary 1 (Distributional Identity and KL)
	Proof of Proposition 1 (Self-Regulation)
	Proof of Proposition 2 (Gradient Decay)
	Proof of Corollary 2 (Dimensional Scaling)
	Proof of Theorem 6 (RKHS Existence)
	Proof of Proposition 4 (Input Robustness)
	Proof of Lemma 1 (Analyticity)
	Justification for Remark 1 (Optimal)
	Topological Properties of Neural Activation Functions
	Proof of Theorem 1 (Mercer Property)
	Proof of Theorem 4 (Universal Approximation)
	Extended Proof of Theorem 6 (RKHS Existence)
	Neural Tangent Kernel Analysis
	Computational Complexity Analysis
	Layer Definition
	Forward Pass Complexity
	Backward Pass Complexity
	Asymptotic Comparison
	Per-Neuron FLOPs
	Numerical Stability
	Implementation Optimizations

	XOR Separability Analysis
	Linear Inseparability of XOR
	Single-Unit ⵟ-Product Solution
	Geometric Mechanism
	Gradient Stability
	Connection to Kernel Theory

	Decision Boundary Analysis
	Localized Response Fields
	Non-Linear Decision Boundaries
	Orthogonality and Maximal Separation
	Gradient-Based Competitive Dynamics
	Softmax Tessellation
	Language Model Experiments: Detailed Configuration
	Architectural Simplification and Efficiency
	Training Dynamics and Loss Progression
	Mixed-Precision Training with BFloat16

	Use of Large Language Models (LLMs)

