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Abstract

We introduce the E-product, a kernel op-
erator combining quadratic alignment with
inverse-square proximity. We prove it
is a Mercer kernel—analytic, Lipschitz on
bounded domains, and self-regularizing—
admitting a unique RKHS embedding. Neu-
ral Matter Networks (NMNs) use E-products
as the sole nonlinearity, replacing conven-
tional linear-activation-normalization blocks
with a single geometrically-grounded opera-
tion. This architectural simplification pre-
serves universal approximation while elimi-
nating explicit activations and layer normal-
ization. Empirically, NMN-based classifiers
match linear baselines on MNIST while ex-
hibiting bounded prototype evolution and su-
perposition robustness. In language model-
ing, Aether-GPT2 achieves lower validation
loss than GPT-2 (2.29 vs 2.43) with fewer
components per layer. Our framework uni-
fies kernel learning, gradient stability, and in-
formation geometry, establishing NMNs as a
principled alternative to conventional neural
architectures.

1. Introduction

Modern neural networks separate geometry from non-
linearity: dot products compute alignment, then acti-
vation functions like ReLU threshold the result (Good-
fellow et all, 2016). This discards information—all
negative activations become zero—requiring normal-
ization layers and attention mechanisms to recover ex-
pressiveness (loffe & Szegedy], 2015; Vaswani et all,
2017).
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We propose the E-product, a neural operator that uni-
fies alignment and proximity in a single computation:

. (w,x)?
E(w,x):= w—x[?Fe (1)

Inspired by inverse-square laws in physics, this opera-
tor creates a “potential well” around the weight vector
w: responses are high when inputs are both aligned
and close, providing intrinsic non-linearity without
thresholding. The E-product is a Mercer kernel (The-
orem [l|) with universal approximation (Theorem H),
self-regulation (Proposition [l), and stable gradients
(Proposition ).

Using this kernel in primal form, we construct Neural-
Matter Networks (NMNs)—networks where neurons
interact through potential fields without requiring
Gram matrix inversion. Our contributions: Our con-
tributions span theory, architecture, and interpretabil-
ity: the E-product eliminates activation functions
while maintaining Mercer kernel properties; NMNs re-
duce memory by 15-25% with infinite differentiability
for physics-informed applications; and the geometric
structure preserves spatial relationships (Theorems P,

), enabling principled analysis of learned representa-
tions.

2. Methodology: A Framework for
Geometry-Aware Computation

The E-product is formally defined as E(w,x) =
(w'x)?
[w—x[>+e"
Uunlike conventional activation functions (e.g., ReLU
(Nair & Hinton, 2010), sigmoid) which are often ap-
plied as separate, somewhat heuristic, transformations
to introduce non-linearity after a linear operation, the
non-linearity in the E-product arises directly from its
mathematical structure. It is a function of the squared
dot product (capturing alignment) and the inverse
squared Euclidean distance (capturing proximity) be-
tween the weight vector w and the input vector x. This
formulation provides a rich, explainable non-linearity
based on fundamental geometric and algebraic rela-

It exhibits a unique form of non-linearity.
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tionships, rather than an imposed, “artificial” non-
linear mapping. The interaction between the numera-
tor and the denominator allows for complex responses
that are inherently tied to the geometric interplay of
the input vectors.

The E-product creates a potential well around the
weight vector w, reflecting both alignment and prox-
imity.

At initialization, this geometry also exhibits a fa-
vorable high-dimensional scaling behavior. Under
standard assumptions of i.i.d. zero-mean, constant-
variance coordinates for x, w € R%, both the numera-
tor A(x,w) = (w'x)? and the denominator r(x,w) =
|lw — x||* grow linearly with dimension, while their
ratio K(x,w) = A/(r + ¢) remains O(1) in expecta-
tion (Corollary P). This self-normalizing O(1) scaling
directly counters high-dimensional “saturation” con-
cerns that arise for RBF kernels, whose values vanish
exponentially with dimension.

As a Mercer kernel (Theorem m), on every compact
domain K the E-product admits a unique RKHS (up
to isometry) (Theorem [j) and inherits kernel method
advantages. Importantly, this kernel is used in its pri-
mal form for weight prototype learning and optimiza-
tion. Consequently, we do not use any Gram matrix,
thereby bypassing the stability issues associated with
its inversion in dual-form kernel regression (Scholkopf
& Smola, 2002).

When the E-product is applied to probability distri-
butions in the simplex, its extremal values admit an
information-geometric characterization:

Theorem 1 (Mercer property of the YAT product
kernel). Let € > 0 and define

(" w)?

TG waRd.
[z —wl* +&’ ’

ke(z,w) =

Then for every compact set K C R?, the kernel kg
is symmetric, continuous, and positive definite on K.
Consequently, kg is a Mercer kernel on K.

Theorem 2 (Minimal Similarity and Statistical Or-
thogonality). Let p,q € A" be distinct distribu-
tions. Then E(p,q) = 0 if and only if their sup-
ports are disjoint, supp(p) N supp(q) = 0. In this
case Dkr,(p|lq) = oo and the cross-entropy H(p,q) is
infinite.

Theorem 3 (Maximal (Singular) Similarity). Define
the e-dependent E-product

(p"q)?

E P C
(P9 = T

Let e >0 and p,q € A" 1.
all p,q, and

Then E_(p,q) is finite for

IIpllz

E.(p,p) = 5

In the singular limit ¢ — 0%, the self-similarity
E.(p,p) diverges.
Singular joint limit. If (qi)k>1 C A" satisfies

qr #p and ||qx — pll2 = 0, and if e, — O, then

Eek (p7 qk:) — 00

Corollary 1 (Distributional Identity and KL). For
distributions p,q € A""', Dxp(plla) = 0 if and
only if p = q (Gibbs’ inequality ((Cover & Thomas,
2006)). In this case the cross-entropy reduces to en-
tropy: H(p,q) = H(p).

The E-product creates a potential well around w,
where interaction strength diminishes with distance
while preserving orientation sensitivity. The explicit
gradient structure (Theorem B) and stable gradient de-
cay (Proposition é) ensure that gradients vanish for
distant inputs, providing natural localization. Input
perturbation robustness (Proposition W) guarantees
bounded response changes on bounded domains (with
constant controlled by €). When applied to probabil-
ity distributions, it connects geometry to information-
theoretic extremes (Theorem P, Theorem JJ, Corol-

lary [If).

2.1. Neural Matter Network (NMN) Layers

The E-product serves as the foundation for Neu-
ral Matter Network layers, employing the non-linear,
spatially-aware KCg-kernel as the primary interaction
mechanism, replacing conventional linear projections
((w,x)). An NMN layer transforms input x € R?
through multiple units, each defined by weight vector
w; € R? and bias b; € R:

w x+b
i, X, b;)
( ZICEW X, ) ( Z||W1—x||2+5

where s is a scaling factor and n denotes the number
of units. Each unit responds based on both alignment
and proximity to its learned weight vector, enabling
universal function approximation (Theorem {) as an
intrinsic property of the Kg-kernel itself. The self-
regulation property (Proposition [ll) ensures that out-
puts remain bounded without requiring explicit nor-
malization layers. Figure [l| illustrates the architectural
simplification.

Theorem 4 (Universal approximation with E-kernel).
Let X C R? be a compact set. Define the class of
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Figure 1. Comparison of Standard Transformer block (left)
and Aether block (right). The NMN layer replaces Lin-
ear+GeLU, eliminating activation functions and all Layer-
Norm operations.

functions F realizable by the network as the linear span
of the activation units:

B (x-w+b)?
f—span{||x_w||2+€

weR%beR}

where € > 0 is a fived constant and b is the inner bias
parameter. The set F is dense in C(X) under the
uniform norm.

Proposition 1 (Natural Self-Regulation). For any
fixed w and unit direction u, the E-product output
remains bounded as k — o0: limg_,oo E(W,ku) =
||wl|? cos? 0, where 6 is the angle between w and u.

Proposition 2 (Gradient Decay for Outliers). The
gradient of the E-product vanishes for distant inputs:
hmeH—»oo HVXE(W,X)H = 0
Theorem 5 (Gradient

vectors e;,ej, the gradient is:
2(e;,e;) (ej _ <ei>ej>(ei—ej)>_

etllei—e;||? etlei—e;|?

Direction). For two
Ve,E =

Theorem 6 (RKHS Existence). For every compact
set K C R?, the kernel kg is positive definite on K
(Theorem B) Hence, by the Moore—Aronszajn theo-
rem, there exists a unique RKHS Hy and feature map
oK K — Hy such that kg(x,y) = (0x(X), drc (¥)) 2k
forallx,y € K.

Proposition 3 (Lipschitz Continuity). Fize > 0 and
a weight vector w with |w||a < 1. Then the map x —
E(w,x) is Lipschitz continuous on the unit ball {x €
Re : ||x|lo < 1} with Lipschitz constant L = 2/ +4 /2.

Lemma 1 (Analyticity). For € > 0, the map x —
E(w,x) is real-analytic on R? (infinitely differentiable).
Proposition 4 (Input Perturbation Robustness). Fiz
e >0 and ||w||2 < 1. For any x,x" in the unit ball with
X —x|[2 <9,
2 4

E(w,x') — E <(=+=)0

(v x) - Emxl < (24 )
Corollary 2 (Dimensional Self-Normalization). Let
x,w € R? have i.id. zero-mean coordinates with
Var(z;) = Var(w;) = 02 (constant in d), and assume
in addition that:

e x and w are independent, and

e the coordinates are sub-Gaussian with parameter
independent of d (e.g., Gaussian initialization),
hence have finite fourth moments.

Fize > 0. Then as d — oo,
E[E(w,x)] = O(1).

Proposition 5 (Extremal Similarity on the Simplex).
Forp,q € A" ': E(p,q) = 0 iff supp(p) Nsupp(q) = 0,
which implies KL(p|lq) = co.

Remark 1 (Optimal € Scaling). For noisy inputs with
n ~ N(0,0%1), the stability constant should scale as
e* o< do? to mazimize gradient signal-to-noise ratio.

2.2. Architectural Implementation

Following the representer theorem (Scholkopf et all,
2001), optimal solutions in kernel methods lie in the
span of kernel evaluations at training points. Since
the E-product is a Mercer kernel, composing mul-
tiple E-layers without intervening linear projections
would create a deep kernel that loses this represen-
tational guarantee. Our architecture therefore pairs
each E-kernel layer with a subsequent linear pro-
jection, preserving the kernel’s theoretical properties
while enabling depth. We also eliminate normalization
layers entirely: the E-product’s self-regulation prop-
erty (Proposition [l|) provides intrinsic normalization,
making explicit batch or layer normalization redun-
dant and potentially harmful to gradient flow. The
Lipschitz _regularity (Proposition gE) and analyticity
(Lemma [If) ensure stable training dynamics and in-
finite differentiability. All NMN-based }Xayers use the

adaptive scaling factor s = (m) , where n is
the number of units and « is a learnable parameter

initialized at 1.

Computational Efficiency: The E-product layer
maintains ©(Bnd) computational complexity identi-
cal to standard linear layers while providing 15-25%
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memory reduction through elimination of activation
storage. Our optimized implementation uses the alge-
braic identity ||w—x||? = ||w|?+|/x/|> — 2w " x to reuse
inner product computations, achieving approximately
2x the FLOPs of Linear+ReLU. The approach offers
natural numerical stability and becomes increasingly
efficient at larger layer sizes, making it particularly
suitable for large-scale applications.

3. Results and Discussion

We evaluate the E-product on three tasks: XOR sepa-
rability (demonstrating non-linearity), MNIST classi-
fication (prototype learning), and language modeling
(Aether-GPT2).

3.1. XOR Separability with a Single Unit

The E-product’s inherent non-linearity enables solving
non-linearly separable problems with a single unit. For
XOR with inputs (0,0) — 0, (0,1) — 1, (1,0) — 1,
(1,1) — 0, a single E-product unit with w = [1, —1]T
achieves perfect separation:

X w'x Ke(w, x) Class
0,00 0 0 0
0,1) -1 1/65+e)>0 1
(1,0) 1 1/(1+e)>0 1
1,1) 0 0 0

By definition (Eq. (m))7 w'x = 0 implies Kg(w,x) =0
(in particular when w L x). See Appendix H for formal
proof.

3.2. Decision Boundaries and Localization

Unlike linear neurons that induce unbounded hyper-
plane partitions, E-product neurons generate local-
ized decision surfaces around prototypes. This fol-
lows from self-regulation (Proposition ﬁ)): the response
Ke(w,x) — [|[w||? cos? 0 as ||x|| — .

Figure 2. Decision boundaries in 2D: linear (left) creates
unbounded half-spaces; E-product (right) forms localized
regions around prototypes (stars).

The extremal similarity results characterize bound-
ary cases. Orthogonality (w'x = 0) yields Kg =
0 directly from Eq. (ﬂ) Identity (w = x) yields
Kg(w,w) = ||w||3/e (Theorem H states this on the sim-
plex; the same algebra holds in R?). Lipschitz conti-
nuity (Proposition JJ) ensures smooth interpolation.

3.3. MINIST Classification

We compare a 10-neuron E-product classifier against
a linear baseline on MNIST (60k training, 10k test
samples). Architecture: C' = 10 prototypes w; € R74,
Training: Adam (lr=0.001), 5 epochs. Baseline: linear
classifier z; = w, x with softmax.

Table 1. MNIST results (10-neuron classifier).

Acc. Allw|| !
Linear  92.08%  +13.8% -
E 92.38% —45% 1—2.68
Bounded Prototype Evolution. The self-

regulation property (Proposition ﬂ) predicts stable
prototype magnitudes.  Empirically, linear proto-
types grow unboundedly (413.8%), while E-product
prototypes contract slightly (—4.5%), confirming
bounded response fields. The learnable scaling factor
a (initialized at 1) increases to 2.68, amplifying
bounded E-responses for softmax discrimination.

Superposition Robustness. The squared numera-
tor (w'x)? creates approximate invariance under sign
flip. Prototype inversion (w — —w) yields:

Original Inverted
Linear  92.04% 0.01%
E 92.18%  87.87%
For linear neurons, (—w)'x = —w'x flips the logit

sign, causing catastrophic failure. For E-product, the
numerator invariance provides robustness.
Territorial Structure. Since the numerator is
(w] w;)?, orthogonal prototypes satisfy E(w;,w;) =
0. The E-product develops heterogeneous structure:
high similarity for morphologically similar digits (7-9),
sharp boundaries elsewhere (Figure {).

3.4. Language Modeling: Aether-GPT2

We train Aether-GPT2 (124M parameters) on 2.5B
tokens from FineWeb. The architectural modifications
follow Section R.1: the MLP block is replaced by an
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Figure 8. Learned prototypes: Linear (left) exhibits diffuse representations; E-product (right) shows sharp, geometrically

coherent features.

Figure 4. Pairwise E-similarity. Linear (left): uniform;
product (right): heterogeneous territorial structure.

NMN layer (dim 3072, i.e., 4x hidden dim) followed
by a linear projection, eliminating activation functions.
All layer normalization is removed from attention skip
connections to preserve geometric structure.

Table 2. GPT-2 vs Aether-GPT2 (2.5B tokens, identical
hyperparameters).

GPT-2  Aether
Activation GeLU E
LayerNorm Yes No
Val Loss (FP32) 2.43 2.29
Val Loss (BF16)  3.03 2.69
Improvement - 11.2%
Throughput 138k 132k
Memory - —15-25%

Architectural Simplification. The self-regulation
property (Proposition [l) and dimensional scaling
(Corollary P) eliminate the need for layer normaliza-
tion. This yields 15-25% memory reduction by remov-
ing activation storage.

Mixed-Precision Stability. Under BF16 train-
ing, Aether-GPT2 achieves 2.69 validation loss ver-
sus 3.03 baseline—an 11.2% relative improvement.
The bounded E-product response provides numerical
stability without explicit normalization. The RKHS
embedding (Theorem fi) ensures well-defined feature
spaces.

See Appendix @ for detailed configuration and BF16
results.

4. Related Work

4.1. Kernel Methods and Neural Tangent
Kernels

Kernel methods enable non-linear learning th
implicit feature mappings (
SVMs (bortes, |1995) and kernel PCA (Scho
) established the foundation, with Gaussian Pro-
cesses (Williams & Rasmussen, m) extending to
probabilistic inference. Scalability came through the
Nystrém method (|Will'ams & Seegetl, 2000) and Ran-

dom Fourier Features (

ahimi & Rechtl, POO”

).

The Neural Tangent Kernel (|Jacot et alj, IZOlé) bridges
kernels and deep learning by characterizing infinite-

width

networks as line

ar models und

er gradient de-

Since

scent (Lee et all, l2019; IArora et all, bOld).
the E-product is a valid Mercer kernel (Theorem [l),
NTK theory extends to our framework (Proposition i),
enabling infinite-width analysis of geometric opera-
tors. The connection between SGD and kernel learning
(lDanielyI, }2017; ILi & Liané, l2018|) further supports our
approach.

Distance-based kernels (RBF) emphasize proximity;
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Figure 5. Training and validation loss curves. Aether-GPT2 consistently achieves lower loss throughout training.

polynomial kernels capture feature interactions. The
E-product unifies both: the squared numerator pro-
vides polynomial-like alignment, while the inverse-
square denominator gives RBF-like locality with in-
trinsic self-regularization.

Deep kernel learning (Wilson et al), 2016; Aitchison
et all, R021) combines neural networks with kernel
flexibility, but operates in dual form requiring O(n?)
Gram matrices. Our primal-form approach computes
directly in feature space, avoiding this cost. Prior
kernelized networks (Cho & Saul, 2009; Mairal et all,
2014) approximate kernels within linear-then-activate
structures; the E-product is simultaneously the com-
putational primitive and the kernel.

4.2. Alternative Neural Operators

Quadratic neurons (Fan et all, 2020; Liao et all, 2024)
achieve non-linearity through polynomial forms but
ignore geometric structure. Multiplicative interac-
tions (Jayakumar et al), 2020) and gated linear units
(Dauphin et all, 2016) introduce element-wise prod-
ucts vet retain activation dependence. SIREN (Sitz-
mann et all, 2020) and Fourier feature networks ([Tan-
cik et al), 2020) employ periodic activations for implicit
representations.

The E-product differs fundamentally: it integrates
alignment (squared dot product) and proximity (in-
verse distance) into a single operator, achieving non-
linearity through geometric structure rather than func-
tional composition—no activation functions required.

4.3. Geometric Foundations

The inverse-square law governs fundamental interac-
tions across physics: gravitation (Newton, 1687), elec-
trostatics (de Coulomb, 1785), and radiation (Gauss,
1835). This principle—intensity scaling inversely with
squared distance—appears in engineering (signal prop-

agation (Rappaport, 2002)) and information theory
(Tanimoto similarity (Tanimotd, 1958)). Geometric
deep learning (Bronstein et all, 2021) provides a uni-
fying framework for exploiting such structure in neural
architectures.

The E-product operationalizes this geometric princi-
ple for neural computation: interaction strength grows
with alignment but decays with distance, providing
a physics-inspired foundation for learning representa-
tions.

5. Conclusion

We introduced the E-product, a kernel operator
that unifies alignment and proximity: Kg(w,x) =
(w'x)?/(|lw — x||? + €). We proved it is a valid
Mercer kernel with analyticity, Lipschitz continuity
on bounded domains, self-regulation, and gradient
decay—properties that enable Neural Matter Net-
works to preserve universal approximation while elimi-
nating explicit activations and normalization. Empiri-
cally, Aether-GPT2 achieves lower validation loss than
GPT-2 (2.29 vs 2.43) with fewer components per layer.
By grounding neural computation in physics-inspired
geometry, this work offers a principled path toward
simpler, more interpretable architectures.
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A. Appendix
B. Squashing Functions for Non-Negative Scores

The non-negative nature of E-product scores necessitates specialized normalization functions. We categorize
these into competitive (vector-normalizing) and individualistic (element-wise) functions.

B.1. Competitive Normalization

Competitive functions induce coupling between dimensions, interpreting scores as relative strengths within a

distribution.

Softermax. A generalized normalization function for non-negative scores x € Rioz
n

"
d n’

€+ i1

where n > 0 controls the distribution sharpness (analogous to inverse temperature) and € > 0 ensures numerical
stability and prevents division by zero for sparse inputs. Unlike softmax, this formulation avoids exponential
terms, improving numerical stability for large input magnitudes.

(2)

softermax,, (xg, {x}) =

B.2. Individualistic Squashing

Individualistic functions map scores to bounded intervals element-wise, preserving independence.

Soft-Sigmoid. Maps z € [0,00) to [0,1):
xn

T 14

3)

This algebraic sigmoid provides a heavy-tailed alternative to the logistic sigmoid, with polynomial rather than
exponential saturation.

on(x)

Soft-Tanh. Maps z € [0,00) to [—1,1):
" —1

417

T (z) = (4)

This corresponds to a rescaled soft-sigmoid: 7,,(z) = 20, (2)—1. The parameter n acts as a gain factor, controlling
the steepness of the transition from the distinct states —1 (orthogonality /dissimilarity) to +1 (alignment/simi-
larity).

soft-sigmoidn(x) = 25 soft-tanh,(x) = ¥=% softermaxn(xe, {xi})

=3 n=05
[ IS

-2
06
04
M ’—l m
00 ) x x x5

Normalized Value

2 3 4 5
X (Input Score) Score Index

0 1 4 5 0 1

2 3
X (Input Score)

Figure 6. Algebraic squashing functions for non-negative E-product scores. These offer bounded, monotonic mappings
without exponential saturation.

B.3. Mathematical Preliminaries

This section collects the key mathematical tools and terminology used throughout the paper.

9
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B.3.1. KERNEL TERMINOLOGY

Definition 1 (Kernel). A kernel is a function k : X x X — R that measures similarity between two inputs
(Schélkopf € Smola, 12002).

Definition 2 (Gram Matrix). Given points x1,...,x, € X, the Gram matrix of k is K € R™*™ with entries
Kij = k(l’l,l’])

Definition 3 (Positive Definite Kernel). A symmetric kernel k is positive definite (PD) if its Gram matriz is
positive semidefinite for every finite set of points:

Z a;ajk(z;,z;) >0 foralla € R"
ig=1

Definition 4 (Feature Map and RKHS). A feature map is a map ® : X — H such that k(z,y) = (P(z), P(y))x.
The reproducing kernel Hilbert space (RKHS) of a PD kernel is the Hilbert space where the kernel becomes an
inner product (|Aronszajn, [1950).

B.3.2. CLOSURE PROPERTIES OF PD KERNELS

Theorem 7 (PD Closure Properties). If ki, ks are positive definite kernels on X, then (Schélkopf & Smola,
2003):

1. k1 + ko is PD (closure under addition)
2. w-ky is PD for w > 0 (closure under nonnegative scaling)
3. ki - ko is PD (Schur product theorem,)

4. [ksw(s)ds is PD for w(s) >0 (closure under nonnegative miztures)

Context: These closure properties are used in the Mercer kernel proof (Theorem B) to show that the product of
the polynomial kernel and inverse multiquadric is PD.

B.3.3. LAPLACE TRANSFORM IDENTITY

Theorem 8 (Laplace Identity for 1/y). For any y > 0:

1 oo
- = / e *Vds.
Y 0

Context: This identity converts the rational term 1/(||x — w||? + €) into an integral over exponentials, enabling
the inverse multiquadric to be expressed as a nonnegative mizture of Gaussian kernels.

B.3.4. COMPLETE MONOTONICITY AND BERNSTEIN REPRESENTATION

Theorem 9 (Bernstein’s Theorem). A function f : [0,00) — R is completely monotonic (i.e.. (—1)"f™)(y) >0
for all n > 0) if and only if it is the Laplace transform of a non-negative measure (Schilling et all, |2012):

0= [T, wzo

Context: The function 1/y is completely monotone, so it admits a nonnegative exponential-mizture representation.
This justifies the decomposition used in the Mercer proof.

B.3.5. INTEGRAL EXCHANGE (TONELLI-FUBINI)

Theorem 10 (Tonelli-Fubini). For o-finite measure spaces and measurable f >0 (Folland, |1999):

[y, (1w [ (o)

10
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Context: Justifies exchanging integrals and sums in PD kernel proofs: “integral of PD kernels is PD” requires
moving the integral outside the quadratic form.

B.3.6. INFORMATION THEORY

Theorem 11 (Gibbs’ Inequality). For probability distributions P,Q (|Cover €& Thomas, 12006):

x)

Dir(P|Q) = ZP log >0,

~

(z
with equality iff P = Q.
Context: Referenced in C’omllaryl] connecting distributional identity to vanishing KL divergence.

B.3.7. HARMONIC ANALYSIS

Theorem 12 (Bochner’s Theorem). A continuous function k : R¢ — C is positive definite and translation-
invariant iff it is the Fourier transform of a finite non-negative measure (Rudin, |1991).

Theorem 13 (Hahn-Banach Density Criterion). A linear subspace M C V is dense in V iff every continuous
linear functional vanishing on M wvanishes on V' ([Rudin, 1991).

Context: Used in the universal approzimation proof (Theorem |4).

C. Proofs of Main Theorems

This section provides the proofs for theorems stated in the main body.

C.1. Proof of Theorem f (Gradient Direction)
Let s = (e;,e;) and D = ¢ + |le; — ;||>. Then E = s2/D.

Using the quotient rule:
25~Veis~D752 Ve, D
D2 '

Vo E =

We have Ve, s = e; and Ve, D = 2(e; — e;). Substituting:

2se; - D —2s%(e; —e;)  2s s(e; —ej)
Ve, E = Fop =ple-——p ) O

C.2. Proof of Proposition E (Lipschitz Continuity)

Fix ¢ > 0 and assume ||x|z < 1 and ||w|j2 < 1. Let s = (x,w) and D = ¢ + ||x — w||3. Then D > . From the
gradient formula (Theorem f):
7[) .

For [|x||2, ||w]l2 < 1, we have |s| = [{x,w)| < 1 and ||x — w|]2 < 2, so:

2 2 2 4
[ViE[ < - (1+=-)==-+=5. O
€ € e &2

IV<E||

\ /\

C.3. Proof of Proposition a (Extremal Similarity)

(1) The numerator (p,q)? = (3_, plqz) = 0 if and only if all terms p;q; = 0, which occurs precisely when supports
are disjoint.

(2) If supp(p) Nsupp(q) = 0, there exists ¢ with p; > 0 and ¢; = 0, making KL(p|lq) = >, pi log(pi/¢;) =

11
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Cross-entropy (used in Theorem E) Under the same condition, the cross-entropy

H(p,q) = - pilogg

contains a term with p; > 0 and ¢; = 0, hence —loggq; = —log0 = 400 and therefore H(p,q) = oo under the
standard convention log0 = —ooc. O

C.4. Proof of Theorem E (Minimal Similarity and Statistical Orthogonality)

Let p,q € A" ! and £ > 0. Since ||p — q||3 +¢ > 0, we have E(p,q) = 0 if and only if p"q = 0. On the simplex,
pigi > 0 for all 4, so Y. p;g; = 0 holds if and only if p;g; = 0 for all i, i.e. supp(p) Nsupp(q) = (. In this case
Dx1(p|lg) = oo by the argument in Proposition a?,and H(p,q) = oo by the cross-entropy note above. O

C.5. Proof of Theorem E (Maximal (Singular) Similarity)

Fix &€ > 0 and define E_( = @
«(pa) =

finite. If @ = p, then ||p — q||2 = 0 and

. For any p,q € A"~! the denominator is at least ¢, hence E.(p,q) is

so E.(p,p) > o0 ase — 0.

Singular joint limit. Let (qi)r>1 C A" ! satisfy qx # p and ||qx — pll2 — 0, and let e, — 0F. Then
(pTax)? = (p'p)? = ||p||3 > 0 while ||p — qi||2 + e — 0. Therefore E., (p, qr) — 0. O

C.6. Proof of Corollary m (Distributional Identity and KL)

By Gibbs’ inequality (see e.g. Cover & Thomas (2006)), Dkr,(pllq) > 0 with equality if and only if p = q. When
p = q, the cross-entropy satisfies H(p,q) = H(p). O

C.7. Proof of Proposition E] (Self-Regulation)

For x = ku:

T2 2w T11)2
E(w, ku) = (kw ' u) _ k*(w ' u) .
|lw—ku||2+¢e ||w||?—2kwTu+k?+e
Dividing numerator and denominator by k2:
(w'u)?
lwl|2/k? —2wTu/k + 1+ &/k>

E(w, ku) = — (w'u)? = |w|?cos?s. O

C.8. Proof of Proposition E (Gradient Decay)

From Theorem H, with s = (x,w) and D = ¢ + ||x — w||3,

2/s| sl lix = wll
<Ell < — —_— .
v, < 25! (il + 17

As ||x]| = oo with fixed w, we have |s| = O(||x]|), ||x — w|l2 = O(||x||), and D = O(]|x||?), hence the right-hand
side is O(1/])x||) — 0. O
C.9. Proof of Corollary E (Dimensional Scaling)

Assume x,w € R? have i.i.d. zero-mean coordinates with Var(z;) = Var(w;) = 02 independent of d, and assume
in addition that x and w are independent. Then
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since cross-terms vanish by independence and zero mean. Moreover,
E[lw —x|3] = E[|lw|3] + E[||x]3] — 2E[w "x] = 2do® = ©(d).

The above shows the numerator and denominator scale linearly in d in expectation, but to control the expectation
of the ratio we use Cauchy—Schwarz. Assume in addition the coordinates are sub-Gaussian with parameter
independent of d (hence have finite fourth moments). Let U := (w'x)? and V := ||w — x||3, so E = U/(V +¢).
Then E[U?] = E[(w'x)*] = O(d?).

Bounding the inverse square moment. Let z; := w; — z;. By independence and sub-Gaussianity, (z;)%;
are i.i.d. mean-zero sub-Gaussian with E[2?] = 202, and

Since z2 —E[z?] is sub-exponential, Bernstein’s inequality implies there exists ¢ > 0 (independent of d) such that
1 K3

P(V < 3E[V]) =P(V < do?) < e

Therefore, for fixed € > 0,

E[(V +£)7) =E[(V +&) Liyzaomy] + E[(V +6)Lveaony] < (dalz)z + e =0
Therefore
BlE| = B | o | < VBT VEIV+ o1 = Q)
as d — oo. O

C.10. Proof of Theorem E (RKHS Existence)

Since kg is positive semi-definite on every compact set K C R? (Theorem E)7 the Moore—Aronszajn theorem
(Aronszajr|, 1950) guarantees the existence of a (unique up to isometry) RKHS H i and feature map ¢x : K —
Hy such that kg(x,y) = (dx(X), i (¥))#, for all x,y € K. O

C.11. Proof of Proposition @ (Input Robustness)

Assume ||w|]s < 1 and x,x’ lie in the unit ball. By the mean value theorem on the line segment between x and
x’ (which stays in the unit ball by convexity) and Lipschitz continuity (Proposition j):

2 4
|E(w,x) —E(w,x)| < L-||6]] = <€ + 52> 0.

In particular, for fixed € this is O(d) (and for small € the constant scales as O(g~2)). O

C.12. Proof of Lemma a (Analyticity)

The E-product is a ratio of polynomials where the denominator ||w —x||> +& > & > 0 is bounded away from zero.
Ratios of polynomials with non-vanishing denominators are real-analytic. O

C.13. Justification for Remark E (Optimal €)

For input data with additive noise n ~ N(0,2I), the noise contribution to ||w — x||? is O(do?) in expectation.
Setting £* o do? ensures the noise floor matches the stability constant, maximizing the signal-to-noise ratio of
gradients.

13
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C.14. Topological Properties of Neural Activation Functions

Theorem 14 (Non-Homeomorphism of Standard Activations). Let T : R? — R™ be defined by T(x) = ¢(Wx+b)
where W € R™*? b € R™, and ¢ is an element-wise activation function. Then:

1. If @ = ReLU and there exist two distinct inputs X1 # X such that Wx; +b < 0 and Wxs +b < 0
coordinatewise, then T is not injective.

2. If ¢ € {sigmoid,tanh}, then T fails to be bi-Lipschitz. For inputs 21,22 in the saturation regime (|z] — 00),
[6(21) — G(as)]] > O regardiess of [l — za].

3. In particular, in the ReLU case above, T is not a homeomorphism onto its image (since it is not injective).
In the sigmoid/tanh case, T can be a homeomorphism onto its image when W is injective, but it is not a
bi-Lipschitz embedding (metric structure can be arbitrarily compressed in saturation).

Proof. (1) ReLU non-injectivity under clipping: For ¢(z) = max(0, z), if (Wx + b); < 0 then the i-th output
coordinate equals 0. If there exist x; # x5 such that Wx; +b < 0 and Wxs + b < 0 coordinatewise, then
T(x1) = T(x2) = 0, hence T is not injective.

(2) Sigmoid/tanh saturation: Consider o(z) = 1/(1 + e #). For z — +o0, o(z) — 1 with |o(2z1) — 0(22)| <
e~ mi“(Z1722)|z1 — zo| for large z1,29. Thus the Lipschitz constant in the saturation regime approaches zero—
distances are compressed. Similarly for tanh(z) = 20(2z) — 1.

(3) Topological vs metric structure: By (1), ReLU can fail injectivity, hence cannot be a homeomorphism onto its
image. By (2), sigmoid/tanh fail bi-Lipschitz (no uniform lower Lipschitz bound), which is a metric distortion
statement and does not by itself preclude homeomorphism when W is injective. O

Remark 2 (Information loss under non-invertible activations (informal)). By the data processing inequality,
representations obtained by applying a deterministic non-invertible nonlinearity (e.g. ReLU clipping) cannot
increase information about the input. Making this statement fully rigorous requires specifying a probabilistic model
(often with additive noise) to avoid pathologies of mutual information for continuous deterministic transforms.

Remark 3 (Contrast with E-Product). The E-product achieves non-linearity through its rational structure

T\2
Ke(w,x) = H“(IV_VX% without collapsing regions. For € > 0, the mapping is:

o Real-analytic (Lemma B )
o Lipschitz on bounded sets (Proposition B)

o Self-regulating with bounded output (Proposition H)

The denominator € > 0 prevents singularities, while the squared numerator provides non-linearity without hard
thresholding.

C.15. Proof of Theorem m (Mercer Property)

Fix € > 0 and let K C R? be compact.

Step 1: Integral representation. For any a > 0,

1 oo
- = / et dt.
a 0

Since ||z — w||?> + & > 0 for all z,w € R%, we apply this identity with a = ||z — wl||? + ¢ to obtain

1 e 4 2
o wlP 1z =/ eteetlm . (5)
r —w 3 0

14
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Multiplying by (z"w)? yields
kg (z, w) 2/ (mTw)267t667tHx7w”2 dt. (6)
0

Step 2: Positive definite components. For each ¢t > 0, the Gaussian kernel

go(a,w) = o~e=l’

is positive definite on R? (Scholkopf & Smola, 2002). The polynomial kernel

p(z,w) = (z"w)?

is also positive definite, since
(zTw)?=(zoz wew),
which is the linear kernel associated with the feature map ®(z) = z ® «.

Step 3: Product kernels. The pointwise product of positive definite kernels is positive definite (Scholkopf &
Smold, 2002). Hence, for each ¢ > 0, the kernel

ki(z,w) := (ava)QeftHI*wH2

—te

is positive definite on R%. Multiplication by the positive scalar e~** preserves positive definiteness.

Step 4: Uniform domination on compact sets. Since K is compact, there exists M > 0 such that ||z|| < M
for all x € K. For all z,w € K and all ¢t > 0,

0 < (2 w)Ze Il < ]2 flw]|? < M*.
Therefore,
0< (xTw)ZeftaeftHaswa < M4€7t5,
and the dominating function ¢ — M?%e~* belongs to L!(0,c0).

Step 5: Preservation of positive definiteness under integration. Let {z;}7; C K and {¢;}!* ; C R. For
each t > 0, since k; is positive definite,

n
Z CiCjkt(l'i7£L'j) 2 0.
i,j=1

By Tonelli’s theorem, justified by the domination in Step 4, we may interchange summation and integration:

n co N
“te —tlzi—as|?
E cicjkE(xi,xj):/ E cicj(x] x;)2e teetmimaill g
0

i,j=1 1,5=1
> 0.

Thus kg is positive definite on K.

Step 6: Continuity and Mercer property. For each fixed ¢ > 0, the integrand in (E) is continuous in
(z,w). By the domination established in Step 4, the integral converges uniformly on K x K, implying that kg
is continuous. The kernel is symmetric by construction.

Since kr is symmetric, continuous, and positive definite on the compact set K, Mercer’s theorem applies (Mercer,
1909; Scholkopf & Smola, 2002). Therefore, kg is a Mercer kernel on K. O

15
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C.16. Proof of Theorem E (Universal Approximation)

_ (xTwb)?

I ES

Let X ¢ R? be compact. The function class F consists of g(x;w,b)

Step 1: Generating the IMQ) kernel. Differentiating twice with respect to bias yields:

0? _
gl w,b) = 2(e + x — wl?) ! = 2Kiniqx, ).
Equivalently, for any fixed step h > 0,
g(x,w,b+h)729(x,w,b)+g(x,w,bfh) 2
= = 2K
h2 et [lx — w2 niQ(x, W),

so IMQ translates belong to the span of E-atoms (indeed, they are exactly a 3-term linear combination for any
fixed h > 0).

Step 2: Density of IMQ Networks. The inverse multiquadric kernel Kiyq(x, w) = (e + ||x — w][?)~! is a universal
kernel on compact subsets of R? (its RKHS is dense in C(X) under the sup norm); see e.g. Steinwart| (2001));
Micchelli et al) (2006); Wendland (2005). Consequently, finite linear combinations of translates Kmvq(-, w;) are
dense in C(X).

Conclusion. Since F contains the span of IMQ kernels, F is dense in C(X). O

C.17. Extended Proof of Theorem [ (RKHS Existence)
The existence follows from the Moore-Aronszajn theorem (Aronszajn, 1950) applied to the PSD kernel (Theo-
rem [If).

Remark 4 (Explicit feature map (sketch)). Since kg is positive definite (Theorem B ), the Moore—Aronszajn
theorem guarantees the existence of a feature map into the associated RKHS. One may also obtain an explicit
construction by_combining the tensor feature map for (x"w)? with the Laplace-mizture representation of 1/(e +
|z — wl||?) in (B) and forming the corresponding direct-integral Hilbert space. We omit the measure-theoretic
details.

C.18. Neural Tangent Kernel Analysis

Proposition 6 (NTK Limit of E-Networks). Consider a single-layer E-network f(x;0) = > i~ a;E(w;, x) with
random initialization. In the infinite-width limit m — oo, the Neural Tangent Kernel is:

KNTK(x,x') = Ey [E(W, x) - E(W,x')] + Ey [VoE(w,x) T VyE(w,x)] .

This kernel is positive definite and inherits the orthogonality-sensitivity of the E-product.

Proof. The network output is f(x) = Y .-, o;E(w;,x). The parameters are @ = U;{c;, w;}. The tangent kernel
is defined as KNTK(x,x') = (Vo f(x), Vo f(x')). The gradients are:

Vo, [(x) = E(w;, x),
thf(X) = OL@VWE(WhX).

The inner product sums over all 4 =1...m:

m

Ko (x,%) = > E(w;, x)E(w;,x') + > o (VyE (Wi, x), VyE(w;,x)).

i=1 i=1

In the infinite width limit m — oo, assuming appropriate scaling a; ~ N(0,1/m) or fixed readouts with
a; ~ O(1/4/m), the sums converge to expectations over the initialization distribution of w. The first term
corresponds to the covariance of the features (conjugate kernel), and the second term involves the gradients.
Since E is a Mercer kernel (Theorem [If), it is positive semi-definite. The second term is a sum of inner products,
also PSD. Thus KNTK = 0. O

16
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Remark 5 (Training Dynamics in the NTK Regime). In the infinite-width limit, gradient descent on E-networks
converges to kernel regression with KNTX . The orthogonality-sensitive nature of the E-product carries over to the
NTK, meaning that the limiting kernel naturally encourages orthogonal representations for different-class inputs.

Theorem 15 (Convergence of Deep E-Networks in Lazy Regime). Consider a deep neural network fp : R4 — R?
with L hidden layers of width m. Let the embeddings e; = fg(x;) be trained under Lapcr,. Under the following
assumptions:

1. Infinite-width limit: m — oo with fized depth L.

2. Lazy training: Learning raten scales asn = O(1/m) ensuring the NTK stays approzimately constant (Jacot
et all, 2018).

3. NTK is non-degenerate: \pi,(O%) > 0 on the training data.
The embedding dynamics converge to a critical point of Larcr.

Proof. Step 1: NTK convergence (Assumption 1-2). In the infinite-width limit with appropriately scaled learning

rate, the NTK:
Of _ <3f0(xi) 3fe(xj)>
ij

09 00
converges to a deterministic positive semi-definite kernel at initialization and remains approximately constant
throughout training (Jacot et all, R018). This is the “lazy training” or “kernel regime.”

Step 2: Preconditioned gradient flow. With fixed ©F, the embedding dynamics become:
E = —0"VgLarcL.

This is a preconditioned gradient flow with the NTK as the preconditioner.

Step 8: Lyapunov analysis. The loss Lapcr serves as a Lyapunov function:

%f =-_VLTetvLe <o,

since ©F = 0. Under Assumption 3, strict decrease occurs whenever VL # 0.

Step 4: Convergence. Since £ > 0 is bounded below and monotonically decreasing, the trajectory converges. By
the analyticity of Larcr, in the embedding space (Lemma [ll), Lojasiewicz’s theorem guarantees convergence to a
single critical point. O
C.19. Computational Complexity Analysis

We analyze the computational complexity of the E-product layer and prove it maintains the same asymptotic
complexity as standard linear layers.

C.19.1. LAYER DEFINITION

For input X € RE*4 and weights W € R"*¢, the E-product layer computes output Y € RE*":

(X, W;)?

Y= —2% 3.
| X —Wj||2+€

Using the algebraic identity || X; — W;||? = || X;[|? + [|W;||> — 2X,T W;:

2
s?,

S=XwT
[ X% + W2 — 284 + ¢’

Y =

17
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C.19.2. FORWARD PAss COMPLEXITY

Theorem 16 (Forward Complexity). The E-product forward pass requires ©(Bnd) operations:

1. GEMM: S = X T e

2. Row norms: || X;

3. Weight norms: ||W;||? (cached) ......... ... o i

4. Element-wise: square, assemble, reciprocal, multiply .......... ... .. ... . ... ... ... ...

Total: Tforwarda = 2Bnd + Bd + nd + 5Bn = ©(Bnd).

C.19.3. BACKWARD PAss COMPLEXITY

Proposition 7 (Gradient Formulas). For Y = S?/D with D = || X||> + |[W|? —2S +c and S = X "W:

2S(|W2 + | X|2 +e-5) 252
VY = D2 W=D X

25(|WII2 + | X[ +e—5) 252
V¥ = D2 Xt

Theorem 17 (Backward Complexity). Given upstream gradient G € RB*";

1. Scalar gradient: Gg = G @ OY [0S ..o o
2. Weight gradient: OLJOW = GLIX ...ooiiiii
3. Input gradient: OL/OX = GgW ..o e

Total: Thockward = 4Bnd + 6Bn + O(Bd + nd) = O(Bnd).

C.19.4. AsympTOTIC COMPARISON

Component Linear E-Product
Forward main 2Bnd 2Bnd
Forward aux Bn Bd +nd+ 5Bn
Backward main 4Bnd 4Bnd
Backward aux 2Bn 6Bn + Bd + nd
Total O(Bnd) ©(Bnd)
Overhead 1 1+ i + % + %

Table 8. Complexity comparison. Overhead < 5% for d,n > 64, B > 16.

C.19.5. PER-NEURON FLOPs

Method FLOPs Relative
Linear + ReLU 2d+1 1.00x
Linear + GELU 2d+15 ~1.03x
E-product (naive) 5d+ 1 ~ 2.5X

E-product (optimized) 4d+4 ~ 2.0

Table 4. Per-neuron FLOPs. Optimized variant avoids redundant norm computation.
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C.19.6. NUMERICAL STABILITY

Remark 6 (Stability Properties). The E-product inherits numerical stability from:

1. Bounded outputs: Self-requlation (Proposition B) ensures E < ||W||*/e
2. Lipschitz gradients: ||VE| < L = O(1/¢?) (Proposition B)

3. Gradient decay: Outliers produce vanishing gradients (Proposition @)

This eliminates the need for gradient clipping or normalization layers.

C.19.7. IMPLEMENTATION OPTIMIZATIONS
1. Algebraic identity: Use || X — W|? = || X||> + |[W|? — 2X "W to reuse GEMM
2. Norm caching: Cache ||W||? between forward passes
3. Kernel fusion: Fuse element-wise operations for memory efficiency
4. Mixed precision: Use FP32 for denominator, BF16/FP16 elsewhere

Empirical performance: 0.85-0.92x linear throughput; 15-25% memory reduction from eliminated activation
storage.

D. XOR Separability Analysis

This section provides a formal analysis of why a single E-product unit can solve the XOR problem, which is not
linearly separable.

D.1. Linear Inseparability of XOR

Proposition 8 (XOR is Not Linearly Separable). Let X = {(0,0),(0,1),(1,0),(1,1)} with labels y = {0,1,1,0}
(XOR function). There exists no hyperplane {x : w x4+ b =0} that separates the classes.

Proof. For a separating hyperplane to exist, we require sign(w ' x + b) to match y for all x € X. This yields four
constraints that form a contradiction: the positive class points (0, 1), (1,0) and negative class points (0,0), (1,1)
cannot be separated by any linear function. O

D.2. Single-Unit E-Product Solution

Theorem 18 (E-Product Solves XOR). A single E-product unit with weight w = [1,—1]T and ¢ > 0 separates
the XOR classes:

X wix E(w,x)
(0,0) 0 0
(0,1) -1 1/(5+4+¢)
(1,0) 1 1/(1+e¢)
(1,1) 0

The threshold T = 0 separates class 1 (positive response) from class 0 (zero response).

Proof. For x = (0,0): w'x =0, so E =0%/(||lw||?> +¢) = 0.
Forx=(1,1): wx=1-1=0,s0 E=0.
Forx=(0,1): wx=—-1,||lw—x|?=14+4=5s0 E=1/(5+¢) > 0.
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Forx=(1,0): wix=1,|lw—x[?2=0+1=1,s0 E=1/(1+¢) > 0.
Thus E > 0 for the positive class and E = 0 for the negative class. O

D.3. Geometric Mechanism

Corollary 3 (Orthogonality-Based Separation). The solution exploits the E-product’s orthogonality property:
E(w,x) = 0 if and only if w L x (Theorem |4). The weight w = [1,—1]T is orthogonal to exactly the negative
class points (0,0) and (1,1).

Remark 7 (Superposition Property). The squared numerator (w'x)? induces superposition: the response is
tdentical for x and —x. This enables classifying antipodal points similarly, which is essential for XOR where
(0,1) and (1,0) must share a class despite [1,—1]7(0,1) = —1 and [1,—1]"(1,0) = +1.

D.4. Gradient Stability

Proposition 9 (Well-Posed Optimization Landscape). The E-product’s gradient properties (Proposition @, The-
orem |]) ensure:

1. No vanishing gradients at x = 0: the gradient is defined and non-degenerate for e > 0
2. Lipschitz continuity prevents exploding gradients (Proposition B}

3. Outlier robustness: gradient magnitude decays as O(1/||x||) for distant inputs

These properties contrast with ReLU neurons, which suffer from ”"dead neuron” problems when w'x < 0, and
linear neurons, which cannot separate XOR at all.

D.5. Connection to Kernel Theory

The single-unit XOR solution demonstrates the expressive power of a Mercer kernel (Theorem m) in the primal
form. The E-product’s RKHS existence (Theorem E) guarantees that this solution lies within a well-defined
function space, connecting to classical kernel methods while avoiding the computational overhead of Gram
matrix inversion.

E. Decision Boundary Analysis

This section provides a formal analysis of the decision boundaries and space-partitioning behavior induced by
E-product neurons.

E.1. Localized Response Fields

Proposition 10 (Bounded Activation Landscape). For fized w and € > 0, the E-product satisfies:
1. 0 <E(w,x) < ||w||*/e for all x
2. E(w,w) = ||w||*/e (mazimum at identity)
3. limg o0 E(W, ku) = ||w||? cos? 0 for unit u (Proposition H)

Thus each neuron defines a bounded, localized response field centered at its prototype.

Proof. (1) Non-negativity is immediate. The maximum occurs when the denominator is minimized (x = w),
giving ||w||*/e. (2) Direct substitution. (3) From Proposition m O
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E.2. Non-Linear Decision Boundaries

Theorem 19 (Algebraic Decision Surfaces). The decision boundary between prototypes w; and w; is the algebraic
surface:

(wi, x)?(lw; —x|* + &) = (w;, x)*(lwi —x]* +e).

This surface is generically non-linear (quartic in x), smooth by analyticity (Lemma B), and Lipschitz-continuous
in its parameters (Proposition |3).

Proof. The boundary is defined by E(w;,x) = E(w;,x). Cross-multiplying:

<Wi7x>2 <Wj7 X>2

[wi =x[I?+e  flw; —x|]* +¢

yields the stated polynomial equation. Expanding shows terms up to degree 4 in x. Smoothness follows from
Lemma [l| since the E-product is real-analytic. Lipschitz continuity of the boundary location follows from Propo-
sition . O

Remark 8 (Contrast with Linear Boundaries). Conventional linear classifiers produce hyperplane boundaries
(wi—w;) x = 0. The E-product’s quartic surfaces enable more flexible class regions while maintaining the
smoothness properties required for stable optimization.

E.3. Orthogonality and Maximal Separation

Corollary 4 (Orthogonal Prototypes Induce Maximal Separation). If prototypes satisfy (w;,w;) =0 for i # j,
then:

1. E(w;,w;) =0 (zero cross-response)
2. On the probability simplex, this corresponds to KL(w;||w;) = oo (Theorem @)

3. Decision boundaries are maximally separated from prototype cores

Proof. (1) If (w;, w;) = 0, the numerator of E(w;, w;) vanishes. (2) By Theorem E, zero E-product on the simplex
implies disjoint supports and infinite KL divergence. (3) At x = w;: E(w;, w;) = ||w;||*/e while E(w;, w;) = 0.
Since ||w;||*/e # 0, the prototype core cannot lie on the decision boundary. O

E.4. Gradient-Based Competitive Dynamics

Proposition 11 (Gradient Structure for Prototype Learning). The gradient of the E-product with respect to
prototype w is (Theorem B)

VB (w,x) = — 2W.X) <x +

et lw—x]?

LELES Y

e+ [lw—x|]?
Key properties:
1. Gradients decay for distant inputs (Proposition @)

2. Perturbation robustness on bounded domains: |AE| < (2 + %) (Proposition )

3. Lipschitz gradients with constant O(1/¢?) (Proposition B}

This gradient structure ensures stable competitive learning: neurons specialize on nearby, aligned inputs while
remaining robust to outliers and noise.
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E.5. Softmax Tessellation

With softmax normalization over E-product responses:
exp(E(w;,x))

35 exp(E(w;. )

the input space is tessellated into regions R; = {x: p; > p; for all j # i}. By Theorem @, each R; has smooth,
curved boundaries. The self-regulation property (Proposition E) ensures that these regions remain well-defined
even for extreme inputs, preventing the unbounded confidence growth observed in linear classifiers.

P =

E.6. Language Model Experiments: Detailed Configuration

This section provides the detailed experimental configurations for the language modeling experiments comparing
a standard GPT-2 with our Aether-GPT2 implementation. Both models were trained on identical datasets and
hardware to ensure a fair comparison. The primary architectural distinction is the replacement of conventional
linear layers, activation functions, and layer normalization in GPT-2 with E-product operations in Aether-
GPT2. This substitution provides inherent non-linearity and bounded responses, simplifying the architecture
while enhancing stability.

Table E presents a comprehensive comparison of the two models, detailing their architectural parameters, training
configurations, and final performance metrics.

Table 5. GPT-2 vs Aether-GPT2 detailed comparison (2.5B tokens from FineWeb).

Parameter GPT-2 Aether
Architecture
Total Params 124M ~124M
Embed Params 39M 39M
Non-Embed Params 85M ~85M
Embed Dim 768 768
MLP Hidden Dim 3072 3072
Layers 12 12
Heads 12 12
Activation GeLU E
LayerNorm Yes No
Bias No No
Training
Optimizer Novograd Novograd
LR 0.003 0.003
Batch Size 32 32
Context 1024 1024
Vocab Size 50,257 50,257
Tokenizer GPT-2 GPT-2
Performance
Val Loss (FP32) 2.43 2.29
Val Loss (BF16) 3.03 2.69

E.6.1. ARCHITECTURAL SIMPLIFICATION AND EFFICIENCY

The substitution of linear-activation-normalization blocks with a single E-product operation per layer yields
significant architectural simplification. This change leads to:

e A 15-25% reduction in peak memory usage by eliminating the need to store intermediate activations for
backpropagation through normalization layers.
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¢ Reduced gradient computation complexity.

e A comparable FLOP count with only a modest constant-factor overhead.

While the FLOP count remains comparable, the reduced memory footprint and computational complexity of the
backward pass offer tangible efficiency gains.

Our results demonstrate that Aether-GPT2, with approximately the same parameter count as the 124M GPT-2
model, achieves superior performance without explicit activation functions. The final validation loss of 2.29
for Aether-GPT?2, compared to 2.43 for the baseline, underscores the efficacy of the E-product’s inherent non-
linearity.

E.6.2. TRAINING DYNAMICS AND L0OSS PROGRESSION

The training dynamics of Aether-GPT2 and baseline GPT-2 were analyzed over 2.5B tokens from the FineWeb
dataset using a Kaggle TPU v5-8 environment. Aether-GPT2 consistently achieves lower loss on both training
and validation sets (see Figure f in the main text). The bounded nature of the E-product contributes to stable
training dynamics, even without layer normalization.

E.6.3. MIXED-PRECISION TRAINING WITH BFLOAT16

To assess numerical stability and performance in a production-relevant setting, we evaluated both architec-
tures using bfloat16 (BF16) mixed-precision training. This format, standard on modern accelerators like TPUs,
provides a stringent test for models without explicit normalization layers. Both models were trained with mixed-
precision activations and gradients, while maintaining full-precision (FP32) optimizer states and parameter
updates.

The performance advantage of Aether-GPT2 persists under BF16, as shown in Figure H Aether-GPT?2 achieves
a final validation loss of 2.69, an 11.2% relative improvement over the baseline’s 3.03. This result confirms that
the architectural benefits are not artifacts of full-precision arithmetic and that the E-product’s bounded response
provides robust numerical stability without requiring layer normalization. The consistent performance gains in
mixed-precision training underscore the practicality of E-product layers as a drop-in replacement for conventional
transformer blocks in large-scale models.
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Figure 7. BF16 training (left) and validation (right) loss. Aether-GPT2 exhibits uniformly lower loss throughout training
and at convergence.

E.7. Use of Large Language Models (LLMs)

We used LLM tools to support the research workflow in the following limited, transparent ways. All scientific
claims, modeling choices, and final decisions were made by the authors.

Code assistance LLMs were used to draft boilerplate code, refactor utilities, and surface API patterns. All
generated code was reviewed, tested, and integrated by the authors.
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Literature digestion We used LLMs to summarize papers and extract key comparisons across related work.
Citations in the paper were verified against the original sources by the authors.

Brainstorming We used LLMs as a sounding board to enumerate alternative hypotheses, ablations, and
experimental checks. Only ideas that survived empirical or theoretical scrutiny were included.

Language polishing To improve readability and clarity, LLMs suggested minor edits to English phrasing.
Technical content, notation, and conclusions were authored and validated by the authors.

NotebookLM podcasts We generated short audio summaries (“podcasts”) of internal notes using Google
NotebookLLM to help the team asynchronously digest drafts. These summaries did not introduce new claims and
were based solely on our own materials.

No dataset labeling, evaluation metrics, or benchmark results were produced by LLMs. The authors take
responsibility for all content and errors.
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